

MS ISO 19141:2009

(CONFIRMED:2015)

MALAYSIAN

STANDARD

Geographic information - Schema for
moving features
(ISO 19141:2008, IDT)

ISO 19141:2008 is endorsed as Malaysian Standard with the

reference number MS ISO 19141:2009.

ICS: 35.240.70

Descriptors: geographic information, moving features, tracking, navigation

© Copyright 2009

DEPARTMENT OF STANDARDS MALAYSIA

NOTE. This Malaysian Standard has been reviewed and confirmed as being current.

DEVELOPMENT OF MALAYSIAN STANDARDS

The Department of Standards Malaysia (STANDARDS MALAYSIA) is the national
standards and accreditation body of Malaysia.

The main function of STANDARDS MALAYSIA is to foster and promote standards,
standardisation and accreditation as a means of advancing the national economy, promoting
industrial efficiency and development, benefiting the health and safety of the public,
protecting the consumers, facilitating domestic and international trade and furthering
international cooperation in relation to standards and standardisation.

Malaysian Standards (MS) are developed through consensus by committees which comprise
balanced representation of producers, users, consumers and others with relevant interests,
as may be appropriate to the subject at hand. To the greatest extent possible, Malaysian
Standards are aligned to or are adoption of international standards. Approval of a standard
as a Malaysian Standard is governed by the Standards of Malaysia Act 1996 [Act 549].
Malaysian Standards are reviewed periodically. The use of Malaysian Standards is voluntary
except in so far as they are made mandatory by regulatory authorities by means of
regulations, local by-laws or any other similar ways.

For the purposes of Malaysian Standards, the following definitions apply:

Revision: A process where existing Malaysian Standard is reviewed and updated which
resulted in the publication of a new edition of the Malaysian Standard.

Confirmed MS: A Malaysian Standard that has been reviewed by the responsible
committee and confirmed that its contents are current.

Amendment: A process where a provision(s) of existing Malaysian Standard is altered. The
changes are indicated in an amendment page which is incorporated into the existing
Malaysian Standard. Amendments can be of technical and/or editorial nature.

Technical corrigendum: A corrected reprint of the current edition which is issued to correct
either a technical error or ambiguity in a Malaysian Standard inadvertently introduced either
in drafting or in printing and which could lead to incorrect or unsafe application of the
publication.

NOTE: Technical corrigenda are not to correct errors which can be assumed to have no consequences in the application

of the MS, for example minor printing errors.

STANDARDS MALAYSIA has appointed SIRIM Berhad as the agent to develop, distribute
and sell Malaysian Standards.

For further information on Malaysian Standards, please contact:

Department of Standards Malaysia OR SIRIM Berhad
Ministry of Science, Technology and Innovation (Company No. 367474 - V)
Level 1 & 2, Block 2300, Century Square 1, Persiaran Dato’ Menteri
Jalan Usahawan Section 2, P. O. Box 7035
63000 Cyberjaya 40700 Shah Alam
Selangor Darul Ehsan Selangor Darul Ehsan
MALAYSIA MALAYSIA

Tel: 60 3 8318 0002 Tel: 60 3 5544 6000
Fax: 60 3 8319 3131 Fax: 60 3 5510 8095
http://www.jsm.gov.my http://www.sirim.my
E-mail: central@jsm.gov.my E-mail: msonline@sirim.my

MS ISO 19141:2009

© STANDARDS MALAYSIA 2009 - All rights reserved i

Committee representation

The Industry Standards Committee on Information Technology, Telecommunication and Multimedia (ISC G) under
whose authority this Malaysian Standard was adopted, comprises representatives from the following organisations:

Association of Consulting Engineers Malaysia
Department of Standards Malaysia
Federation of Malaysian Manufacturers
Institut Tadbiran Awam Negara, Malaysia
Malaysian Administrative, Modernisation and Management Planning Unit
Malaysian International Chamber of Commerce and Industry
Malaysian National Computer Confederation
Malaysian Technical Standards Forum Berhad
MIMOS Berhad
Ministry of Domestic Trade and Consumer Affairs
Ministry of Energy, Water and Communications
Ministry of International Trade and Industry
Ministry of Science, Technology and Innovation
Multimedia Development Corporation Sdn Bhd
Multimedia University
Science and Technology Research Institute for Defence
SIRIM Berhad (Secretariat)
Suruhanjaya Komunikasi dan Multimedia Malaysia
Telekom Malaysia Berhad
The Institution of Engineers, Malaysia
The National ICT Association of Malaysia
Universiti Teknologi Malaysia

The Technical Committee on Geographic Information/Geomatics which recommended the adoption of the ISO
Standard consists of representatives from the following organisations:

Department of Agriculture, Malaysia
Department of Survey and Mapping Malaysia
ESRI South Asia Sdn Bhd
GeoInfo Services Sdn Bhd
Jabatan Kerja Raya Malaysia
Jabatan Perancangan Bandar dan Desa
Malaysian Agricultural Research and Development Institute
Pusat Infrastuktur Data Geospatial Negara
Pusat Remote Sensing Malaysia
SIRIM Berhad (Secretariat)
Universiti Malaya
Universiti Sains Malaysia
Universiti Teknologi Malaysia
Universiti Teknologi MARA

MS ISO 19141:2009

© STANDARDS MALAYSIA 2009 - All rights reserved ii

NATIONAL FOREWORD

The adoption of the ISO Standard as a Malaysian Standard was recommended by the
Technical Committee on Geographic Information/Geomatics under the authority of the
Industry Standards Committee on Information Technology, Telecommunication and
Multimedia.

This Malaysian Standard is identical with ISO 19141:2008, Geographic information - Schema
for moving features, published by the International Organization for Standardization (ISO).
However, for the purposes of this Malaysian Standard, the following apply:

a) in the source text, "this International Standard" should read "this Malaysian Standard";

b) the comma which is used as a decimal sign (if any), to read as a point; and

c) reference to International Standards should be replaced by equivalent Malaysian
Standards as follows:

Referenced International Standards Corresponding Malaysian Standards

ISO/TS 19103, Geographic information -
Conceptual schema language

 MS ISO/TS 19103, Geographic information -
Conceptual schema language

ISO 19107, Geographic information -
Spatial schema

 MS ISO 19107, Geographic information -
Spatial schema

ISO 19108, Geographic information -
Temporal schema

 MS ISO 19108, Geographic information -
Temporal schema

ISO 19109, Geographic information - Rules
for application schema

 MS ISO 19109, Geographic information -
Rules for application schema

ISO 19133, Geographic information -
Location-based services - Tracking and
navigation

 MS ISO 19133, Geographic information -
Location-based services -Tracking and
navigation

Compliance with a Malaysian Standard does not of itself confer immunity from legal
obligations.

NOTE. IDT on the front cover indicates an identical standard i.e. a standard where the technical content, structure,
wording (or is an identical translation) of a Malaysian Standard is exactly the same as in an International Standard or
is identical in technical content and structure although it may contain the minimal editorial changes specified in clause
4.2 of ISO/IEC Guide 21-1.

Reference number
ISO 19141:2008(E)

© ISO 2008

INTERNATIONAL
STANDARD

ISO
19141

First edition
2008-06-01

Geographic information — Schema for
moving features

Information géographique — Schéma des entités mobiles

ISO 19141:2008(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but

shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In

downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat

accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation

parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

 COPYRIGHT PROTECTED DOCUMENT

© ISO 2008

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,

electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or

ISO's member body in the country of the requester.

ISO copyright office

Case postale 56 • CH-1211 Geneva 20

Tel. + 41 22 749 01 11

Fax + 41 22 749 09 47

E-mail copyright@iso.org

Web www.iso.org

Published in Switzerland

ii © ISO 2008 – All rights reserved

ISO 19141:2008(E)

© ISO 2008 – All rights reserved iii

Contents Page

Foreword... v

Introduction ... vi

1 Scope ... 1

2 Conformance... 1
2.1 Conformance classes... 1
2.2 Requirements .. 2

3 Normative references ... 2

4 Terms, definitions, and abbreviated terms .. 3
4.1 Terms and definitions... 3
4.2 Abbreviated terms .. 5

5 Package – Moving Features... 6
5.1 Semantics .. 6
5.2 Package structure... 7
5.3 Class hierarchy ... 7

6 Package – Geometry Types ... 9
6.1 Package semantics... 9
6.2 Type – MF_OneParamGeometry ... 9
6.3 Type – MF_TemporalGeometry ... 11
6.4 Type – MF_Trajectory... 12
6.5 Type – MF_TemporalTrajectory... 14
6.6 Class – MF_PositionExpression ... 20
6.7 Type – MF_SecondaryOffset ... 20
6.8 Type – MF_MeasureFunction .. 21

7 Package – Prism Geometry ... 22
7.1 Package structure... 22
7.2 CodeList – MF_GlobalAxisName... 23
7.3 Type – MF_LocalGeometry .. 25
7.4 Type – MF_PrismGeometry ... 27
7.5 Type – MF_RigidTemporalGeometry .. 28
7.6 Type – MF_RotationMatrix ... 29
7.7 Type – MF_TemporalOrientation... 30

8 Moving features in application schemas.. 30
8.1 Introduction ... 30
8.2 Representing the spatial characteristics of moving features .. 31
8.3 Associations of moving features .. 31
8.4 Operations of moving features.. 31

Annex A (normative) Abstract test suite.. 32
A.1 Application schemas for data transfer ... 32
A.2 Application schemas for data with operations.. 32

Annex B (informative) UML Notation.. 34
B.1 Introduction ... 34
B.2 Class... 34
B.3 Stereotype ... 34
B.4 Attribute ... 35
B.5 Operation ... 35
B.6 Constraint .. 36
B.7 Note .. 36

ISO 19141:2008(E)

iv © ISO 2008 – All rights reserved

B.8 Association .. 36
B.9 Role name .. 36
B.10 Multiplicity.. 37
B.11 Navigability .. 37
B.12 Aggregation ... 37
B.13 Composition .. 38
B.14 Dependency... 38
B.15 Generalization.. 38
B.16 Realization ... 39

Annex C (informative) Interpolating between orientations .. 40
C.1 Introduction ... 40
C.2 Euler rotations and gimbal lock... 40
C.3 Interpolating between two orientation matrices .. 42
C.4 Interpolating between other orientation representations ... 44
C.5 Sample interpolation... 45

Bibliography ... 49

ISO 19141:2008(E)

© ISO 2008 – All rights reserved v

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards
adopted by the technical committees are circulated to the member bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 19141 was prepared by Technical Committee ISO/TC 211, Geographic information/Geomatics.

ISO 19141:2008(E)

vi © ISO 2008 – All rights reserved

Introduction

This International Standard specifies a conceptual schema that addresses moving features, i.e., features
whose locations change over time. This schema includes classes, attributes, associations and operations that
provide a common conceptual framework that can be implemented to support various application areas that
deal with moving features, including:

⎯ Location Based Services,

⎯ Intelligent Transportation Systems,

⎯ Tracking and navigation (land-based, marine, or space), and

⎯ Modeling and simulation.

The schema specifies mechanisms to describe motion consisting of translation and/or rotation of the feature,
but not including deformation of the feature. The schema is based on the concept of a one parameter set of
geometries that may be viewed as a set of leaves or a set of trajectories, where a leaf represents the
geometry of the moving feature at a particular value of the parameter (e.g., a point in time) and a trajectory is
a curve that represents the path of a point in the geometry of the moving feature as it moves with respect to
the parameter.

INTERNATIONAL STANDARD ISO 19141:2008(E)

© ISO 2008 – All rights reserved 1

Geographic information — Schema for moving features

1 Scope

This International Standard defines a method to describe the geometry of a feature that moves as a rigid body.
Such movement has the following characteristics.

a) The feature moves within any domain composed of spatial objects as specified in ISO 19107.

b) The feature may move along a planned route, but it may deviate from the planned route.

c) Motion may be influenced by physical forces, such as orbital, gravitational, or inertial forces.

d) Motion of a feature may influence or be influenced by other features, for example:

1) The moving feature might follow a predefined route (e.g. road), perhaps part of a network, and might
change routes at known points (e.g. bus stops, waypoints).

2) Two or more moving features may be “pulled” together or pushed apart (e.g. an airplane will be
refuelled during flight, a predator detects and tracks a prey, refugee groups join forces).

3) Two or more moving features may be constrained to maintain a given spatial relationship for some
period (e.g. tractor and trailer, convoy).

This International Standard does not address other types of change to the feature. Examples of changes that
are not adressed include the following:

⎯ The deformation of features.

⎯ The succession of either features or their associations.

⎯ The change of non-spatial attributes of features.

⎯ The feature’s geometric representation cannot be embedded in a geometric complex that contains the
geometric representations of other features, since this would require the other features’ representations to
be updated as the feature moves.

Because this International Standard is concerned with the geometric description of feature movement, it does
not specify a mechanism for describing feature motion in terms of geographic identifiers. This is done, in part,
in ISO 19133.

2 Conformance

2.1 Conformance classes

2.1.1 Introduction

This International Standard specifies four conformance classes (Table 1). They are differentiated on the basis
of two criteria: purpose and level of complexity.

ISO 19141:2008(E)

2 © ISO 2008 – All rights reserved

2.1.2 Purpose

This International Standard may be used in support of data transfer. Operations defined for objects are
irrelevant to data transfer, which requires only descriptions of the state of the objects at the time of transfer.
Thus, two conformance classes require only the implementation of attributes and associations of the classes
specified in the schema. The other two conformance classes support the object-oriented implementation of
systems or interfaces; they require implementation of operations as well as implementation of attributes and
associations.

2.1.3 Complexity

Many applications do not need a complete description of the geometry of a feature and its orientation at any
point in time. Their requirements are satisfied by describing the movement of a single reference point on the
feature using its trajectory as specified in Clause 6. One pair of conformance classes supports these simple
applications.

Other applications need knowledge of the positions at each time of all points or a significant subset of the
points on a moving feature. They require the full description provided by the prism geometry specified in
Clause 7.

Table 1 — Conformance classes

Purpose
Complexity

Data Transfer Data with operations

Trajectory A.1.1 A.2.1

Prism Geometry A.1.2 A.2.2

2.2 Requirements

To conform to this International Standard, an application schema shall satisfy the requirements of the Abstract
Test Suite in Annex A.

3 Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

ISO/TS 19103, Geographic information — Conceptual schema language

ISO 19107, Geographic information — Spatial schema

ISO 19108, Geographic information — Temporal schema

ISO 19109, Geographic information — Rules for application schema

ISO 19133, Geographic information — Location-based services — Tracking and navigation

ISO 19141:2008(E)

© ISO 2008 – All rights reserved 3

4 Terms, definitions, and abbreviated terms

4.1 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

4.1.1
base representation

〈moving features〉 representation, using a local origin and local ordinate vectors, of a geometric object at a
given reference time

NOTE 1 A rigid geometric object may undergo translation or rotation, but remains congruent with its base
representation.

NOTE 2 The local origin and ordinate vectors establish an engineering coordinate reference system (ISO 19111), also
called a local frame or a local Euclidean coordinate system.

4.1.2
curve
1-dimensional geometric primitive, representing the continuous image of a line

[ISO 19107:2003, definition 4.23]

NOTE The boundary of a curve is the set of points at either end of the curve. If the curve is a cycle, the two ends are

identical, and the curve (if topologically closed) is considered to not have a boundary. The first point is called the start
point, and the last is the end point. Connectivity of the curve is guaranteed by the "continuous image of a line" clause. A
topological theorem states that a continuous image of a connected set is connected.

4.1.3
design coordinate reference system
engineering coordinate reference system in which the base representation of a moving object is specified

4.1.4
feature
abstraction of real world phenomena

[ISO 19101:2002, definition 4.11]

NOTE A feature may occur as a type or an instance. Feature type or feature instance shall be used when only one is
meant.

4.1.5
feature association
relationship that links instances of one feature type with instances of the same or a different feature type

[ISO 19110:2004, definition 4.2]

NOTE Feature associations include aggregation of features.

4.1.6
feature attribute
characteristic of a feature

[ISO 19101:2002, definition 4.12]

4.1.7
feature operation
operation that every instance of a feature type may perform

[ISO 19110:2004, definition 4.5]

ISO 19141:2008(E)

4 © ISO 2008 – All rights reserved

4.1.8
foliation
one parameter set of geometries such that each point in the prism of the set is in one and only one
trajectory and in one and only one leaf

4.1.9
geometric object
spatial object representing a geometric set

[ISO 19107:2003, definition 4.47]

4.1.10
geometric primitive
geometric object representing a single, connected, homogeneous element of space

[ISO 19107:2003, definition 4.48]

NOTE Geometric primitives are non-decomposed objects that present information about geometric configuration.
They include points, curves, surfaces, and solids.

4.1.11
instant
0-dimensional geometric primitive representing position in time

[ISO 19108:2002, definition 4.1.17]

4.1.12
leaf
〈one parameter set of geometries〉 geometry at a particular value of the parameter

4.1.13
location-based service
LBS
service whose return or other property is dependent on the location of the client requesting the service or of
some other thing, object or person

[ISO 19133:2005, definition 4.11]

4.1.14
network
abstract structure consisting of a set of 0-dimensional objects called junctions, and a set of 1-dimensional
objects called links that connect the junctions, each link being associated with a start (origin, source) junction
and end (destination, sink) junction

[ISO 19133:2005, definition 4.17]

NOTE The network is essentially the universe of discourse for the navigation problem. Networks are a variety of 1-
dimensional topological complex. In this light, junction and topological node are synonyms, as are link and directed edge.

4.1.15
one parameter set of geometries

function f from an interval t ∈ [a, b] such that f(t) is a geometry and for each point P ∈ f(a) there is a one

parameter set of points (called the trajectory of P) P(t) : [a, b] →P(t) such that P(t) ∈ f(t)

EXAMPLE A curve C with constructive parameter t is a one parameter set of points c(t).

4.1.16
period
one-dimensional geometric primitive representing extent in time

[ISO 19108:2002, definition 4.1.27]

NOTE A period is bounded by two different temporal positions.

ISO 19141:2008(E)

© ISO 2008 – All rights reserved 5

4.1.17
point
0-dimensional geometric primitive, representing a position

[ISO 19107:2003, definition 4.61]

NOTE The boundary of a point is the empty set.

4.1.18
prism

〈one parameter set of geometries〉 set of points in the union of the geometries (or the union of the
trajectories) of a one parameter set of geometries

NOTE This is a generalization of the concept of a geometric prism that is the convex hull of two congruent polygons
in 3D-space. Such polyhedrons can be viewed as a foliation of congruent polygons.

4.1.19
temporal coordinate system
temporal reference system based on an interval scale on which distance is measured as a multiple of a

single unit of time

[ISO 19108:2002, definition 4.1.31]

4.1.20
temporal position
location relative to a temporal reference system

[ISO 19108:2002, definition 4.1.34]

4.1.21
temporal reference system

reference system against which time is measured

[ISO 19108:2002, definition 4.1.35]

4.1.22
trajectory
path of a moving point described by a one parameter set of points

4.1.23
vector
quantity having direction as well as magnitude

[ISO 19123:2005, definition 4.1.43]

4.2 Abbreviated terms

CRS Coordinate Reference System (ISO 19111)

SLERP Spherical Linear Interpolation

LRS Linear Referencing System (ISO 19133)

OCL Object Constraint Language (ISO/IEC 19501)

UML Unified Modelling Language (ISO/IEC 19501)

ISO 19141:2008(E)

6 © ISO 2008 – All rights reserved

5 Package – Moving Features

5.1 Semantics

A moving feature can be modelled as a combination of movements. The overall motion can be expressed as
the temporal path or trajectory of some reference point on the object (the “origin”), such as its center of gravity.
Once the origin’s trajectory has been established, the position along the trajectory can be described using a
linear reference system (as defined in ISO 19133). The “parameterization by length” for curves (as defined in
ISO 19107) can be used as a simple linear reference if no other is available. The relationship between time (t)
and measure value (m) can be represented as the graph of the t→ m function in a plane with coordinates
(t, m). This separation of the geometry of the path and the actual “time to position” function allows the moving
feature to be tracked along existing geometry.

Figure 1 illustrates how the concepts of foliation, prism, trajectory, and leaf relate to one another. In this
illustration, a 2D rectangle moves and rotates. Each representation of the rectangle at a given time is a leaf.
The path traced by each corner point of the rectangle (and by each of its other points) is a trajectory. The set
of points contained in all of the leaves, and in all of the trajectories, forms a prism. The set of leaves also
forms a foliation.

Figure 1 — Feature movement as foliation

These two object representations, of the path and the position along that path, give the general position of the
moving feature. The other variable in describing the position of the feature is the rotation about the chosen
reference point. To describe this, a local engineering coordinate system is established using the object
reference point as its origin. The geometry of the feature is described in the engineering coordinate system
and the real-world orientation of the feature is given by mapping of the local coordinate axes to the global
coordinate system (the CRS of the trajectory of the reference point). This can be given as a matrix that maps
the unit vectors of the local coordinate system to vectors in the global CRS.

If the global CRS and local CRS have the same dimension, then each point within the local CRS can be
traced in time through the global CRS by combinations of these various mappings. The map would trace from
time (t) to the measure (m) to a position on the reference point's path using the LRS. Then using the rotation
matrix, the calculated offset from this point gives a direct position in the global CRS.

This means that the ‘prism’ of the moving feature (defined as all the points which part of the feature passes
through) can be viewed (and calculated to whatever degree of accuracy needed) as a bundle of trajectories of

ISO 19141:2008(E)

© ISO 2008 – All rights reserved 7

points on the local engineering representation of the feature's geometry. If viewed in a 4 dimensional spatio-
temporal coordinate system, the points on the feature at different times are different points. Then the pre-
image of the prism (points on the trajectories augmented by a time coordinate) is a foliation, meaning that
there is a complete and separate representation of the geometry of the feature for each specific time (called a
“leaf”). These names come from a 3D metaphor of a book, where each page or leaf is a slice of time in the
“folio”.

This might form the basis for an extension of this standard to non-rigid, mutable objects. Each leaf in the 4D
foliation is a separate representation of the object, and by creating methods to describe the change through
time of the shape and form of the feature, the existing machinery in this International Standard can be used to
place those representations in positions with respect to the global coordinate system.

5.2 Package structure

This clause presents a conceptual schema for describing moving features that is specified using the Unified
Modelling Language (UML) [ISO/IEC 19501], following the guidance of ISO/TS 19103. Annex B describes
UML notation as used in this International Standard.

The schema is contained in the UML package Moving Features. Names of classes included in this package
carry the prefix "MF_". The package is subdivided into two leaf packages (Figure 2), Geometry Types and
Prism Geometry. The classes in these two packages are derived from classes included in the Geometry
Package specified in ISO 19107. Classes from the packages Basic Types [ISO/TS 19103], Geometry
[ISO 19107], Temporal Objects, and Temporal Reference System [ISO 19108] are used as data types in the
schema.

5.3 Class hierarchy

The classes of the moving features schema form an inheritance hierarchy that has its source in the classes
GM_Object and GM_Curve specified in ISO 19107 (Figure 3). This allows the subclasses specific to this
schema to be used as feature attributes in compliance with the General Feature Model specified in ISO 19109.
The second level of the hierarchy consists of a set of classes that describe a one-parameter geometry. These
might be used to describe the movement of a feature with respect to any single variable such as pressure,
temperature, or time. The third level specializes these classes to describe motion in time. The classes are
specified fully in Clauses 6 and 7.

ISO 19141:2008(E)

8 © ISO 2008 – All rights reserved

Geometry Types

+ MF_MeasureFunction

+ MF_OneParamGeometry

+ MF_PositionExpression

+ MF_SecondaryOffset

+ MF_TemporalGeometry

+ MF_TemporalTrajectory

+ MF_Trajectory

ISO 19141 Moving Features
(from Logical View)

Prism Geometry

+ MF_GlobalAxisName

+ MF_LocalGeometry

+ MF_PrismGeometry

+ MF_RigidTemporalGeometry

+ MF_RotationMatrix

+ MF_TemporalOrientation

<<normative>>

Geometry
(from ISO 19107 Spatial Schema)

<<Leaf>>

Coordinate geometry
(from Geometry)

<<Leaf>>

Geometry root
(from Geometry)

<<Leaf>>

Geometric primitive
(from Geometry)

<<Leaf>>

Temporal Reference System
(from ISO 19108 Temporal)

Figure 2 — Moving Feature Package

<<Type>>

GM_Object
(from Geometry root)

<<Type>>

GM_Curve
(from Geometric primitive)

<<Type>>

MF_OneParamGeometry

<<Type>>

MF_TemporalGeometry

<<Type>>

MF_Trajectory

<<Type>>

MF_TemporalTrajectory

Figure 3 — Components of the Geometry Types Package

ISO 19141:2008(E)

© ISO 2008 – All rights reserved 9

6 Package – Geometry Types

6.1 Package semantics

The Geometry Types package contains seven types. Two classes – MF_OneParamGeometry and
MF_Trajectory – specify one-parameter geometry types based on the geometric objects specified in
ISO 19107 (see Figure 3). Two other classes – MF_TemporalGeometry and MF_TemporalTrajectory –
specialize the first classes in order to specify a one-parameter set of geometries in which the parameter is
time. The other three classes – MF_MeasureFunction, MF_SecondaryOffset and MF_PositionExpression
(Figure 4) – are used to extend the concepts of linear reference systems as defined in ISO 19133. Description
of movement in terms of geographic identifiers is out of scope, and is partly covered in ISO 19133.

<<Type>>

LR_LinearReferenceMethod
(from Linear Reference Systems)

<<Type>>

LR_Element
(from Linear Reference Systems)

<<Type>>

LR_PositionExpression
(from Linear Reference Systems)

<<Type>>

LR_ReferenceMarker
(from Linear Reference Systems)

<<Type>>

LR_OffsetExpression
(from Linear Reference Systems)

MF_PositionExpression
<<Type>>

MF_SecondaryOffset

+ offsetVector : Vector

<<CodeList>>

LR_OffsetReference
(from Linear Reference Systems)

+ centerline

+ edgeOfTravel

+ rightOfWay

+ curb

+ edgeOfBerm

+ sidewalkInside

+ sidewalkOutside

<<Type>>

MF_MeasureFunction

+ graphOfMeasure : GM_Curve[1..*]

+ graphOfOffset[0..1] : GM_Curve[1..*]

+ graphOfSecondaryOffsets [0..1] : GM_Curve[1..*]

+ geometry : LR_Element

+ range : LR_LinearReferenceMethod

0..*

0..1

+LRM

+referenceElement

+datumMarkers

+marker

{ordered}

+referent

+offset

+secondaryOffset

1..*

1

1

0..* 0..*

1

+referenceDomain

0..1

Figure 4 — Use of Linear Reference System by Moving Features

6.2 Type – MF_OneParamGeometry

6.2.1 Class semantics

A one parameter set of geometries is a function f from an interval t ∈ [a, b] such that f(t) is a geometry and for

each point P ∈ f(a) there is a one parameter set of points (called the trajectory of P) P(t) : [a, b] → P(t) such

that P(t) ∈ f(t). A leaf of a one parameter set of geometries is the geometry f(t) at a particular value of the

ISO 19141:2008(E)

10 © ISO 2008 – All rights reserved

parameter. The set of geometries forms a prism that is the set of points in the union of the geometries (or the
union of the trajectories).

EXAMPLE A curve C with constructive parameter t is a one parameter set of points c(t).

6.2.2 Inheritance from GM_Object

The type "MF_OneParamGeometry" (Figure 5) inherits from the type "GM_Object." As such it shall implement
all attributes, operations and associations inherited from that type as specified in ISO 19107, as well as those
specified in this subclause.

<<Type>>

GM_Object
(from Geometry root)

<<Type>>

Number
(from Numerics)

<<Type>>

MF_OneParamGeometry

<<Type>>

MF_TemporalGeometry

<<Type>>

MF_Trajectory

+ beginDomain : Number

+ endDomain : Number

+ leafGeometry(p : Number) : GM_Object

+ trajectory(point : DirectPosition, p : Number) : MF_Trajectory

+ prism() : GM_Object

Figure 5 — Context Diagram: MF_OneParamGeometry

6.2.3 Attribute – beginDomain

The attribute "beginDomain" shall contain the value of the parameter at the start of the domain of the one-
parameter geometry. The data type Number is specified in ISO/TS 19103.

MF_OneParamGeometry::beginDomain: Number

6.2.4 Attribute – endDomain

The attribute "endDomain" shall contain the value of the parameter at the end of the domain of the one-
parameter geometry.

MF_OneParamGeometry::endDomain: Number

6.2.5 Operation – leafGeometry

The operation leafGeometry shall accept a value of the parameter as input and return the leaf associated with
that value as an instance of GM_Object.

MF_OneParamGeometry::leafGeometry(p: Number): GM_Object

ISO 19141:2008(E)

© ISO 2008 – All rights reserved 11

6.2.6 Operation – trajectory

The operation trajectory shall accept the position of a point on a leaf (identified by a value of the parameter p)
of the one parameter set of geometries and return the trajectory of that point.

MF_OneParamGeometry::trajectory(point: DirectPosition, p: Number):
MF_Trajectory

6.2.7 Operation – prism

The operation prism shall return an instance of GM_Object that is the prism formed by the union of all the
leaves of this instance of MF_OneParamGeometry.

MF_OneParamGeometry::prism(): GM_Object

6.3 Type – MF_TemporalGeometry

6.3.1 Class semantics

MF_TemporalGeometry (Figure 6) is a specialization of MF_OneParamGeometry in which the parameter is
time as expressed by TM_Coordinate. TM_Coordinate is specified in ISO 19108; it expresses time as a
multiple of a single unit of measure such as year, day, or second.

<<Type>>

MF_PrismGeometry
(from Prism Geometry)

<<Type>>

MF_TemporalGeometry

<<Type>>

MF_TemoporalTrajectory

+ leafGeometry(m : TM_Coordinate) : GM_Object

+ trajectory(point : DirectPosition, p : TM_Coordinate) : MF_TemporalTrajectory

+ startTime() : TM_Coordinate

+ endTime() : TM_Coordinate

+ nearestApproach(object : GM_Object, timeInterval : TM_Period) : Distance, TM_GeometricPrimitive[1..*]

+ intersection(object : GM_Object, timeInterval : TM_Period) : TM_TemporalGeometry

<<Type>>

MF_OneParamGeometry

Figure 6 — Context Diagram: MF_TemporalGeometry

6.3.2 Inheritance from MF_OneParamGeometry

The type "MF_TemporalGeometry" inherits from the type "MF_OneParamGeometry". As such it shall
implement all inherited attributes, operations and associations.

ISO 19141:2008(E)

12 © ISO 2008 – All rights reserved

6.3.3 Operation – leafGeometry

The operation leafGeometry shall accept a time as input and return the instance of GM_Object that describes
the leaf of the temporal geometry at that time.

MF_TemporalGeometry::leafGeometry(m: TM_Coordinate): GM_Object

6.3.4 Operation – trajectory

The operation trajectory shall accept the position of a point on a leaf of the MF_TemporalGeometry at a
specified time and return the temporal trajectory of that point.

MF_TemporalGeometry::trajectory(point: DirectPosition, p: TM_Coordinate):
MF_TemporalTrajectory

6.3.5 Operation – startTime

The operation startTime shall return the time at which the temporal geometry begins. This shall correspond to
the value of "beginDomain".

MF_TemporalGeometry::startTime(): TM_Coordinate

6.3.6 Operation – endTime

The operation endTime shall return the time at which the temporal geometry ends. This shall correspond to
the value of "endDomain".

MF_TemporalGeometry::endTime(): TM_Coordinate

6.3.7 Operation – nearestApproach

The operation "nearestApproach" shall return the distance and time of the nearest approach of the temporal
geometry to any other geometric object. If the other geometric object is also a temporal geometry, then this
operation is symmetric. The parameter "timeInterval" shall restrict the search to a particular period of time.

MF_TemporalGeometry::nearestApproach(object: GM_Object, timeInterval:
TM_Period): Distance, TM_GeometricPrimitive[1..*]

6.3.8 Operation – intersection

The operation "intersection" shall return the temporal geometry of the intersection of the temporal geometry to
any other geometric object. If the other geometric object is also a temporal geometry, then this operation is
symmetric. The parameter "timeInterval" shall restrict the search to a particular period of time.

MF_TemporalGeometry::intersection(object: GM_Object, timeInterval:
TM_Period): MF_TemporalGeometry

6.4 Type – MF_Trajectory

6.4.1 Class semantics

MF_Trajectory (Figure 7) describes a one-parameter geometry whose cross section is a point. The class is
subject to the constraint that the position of the GM_Point returned by the leafGeometry operation equals the
position returned by the leaf operation for the same value of the parameter m. This is expressed by the OCL:

{leafGeometry(m).position = leaf(m)}

The attributes of the class are derived using inherited operations as well as those specified for the class.

ISO 19141:2008(E)

© ISO 2008 – All rights reserved 13

<<Type>>

GM_Curve
(from Geometric primitive)

<<Type>>

MF_Trajectory

<<Type>>

MF_TemporalTrajectory

<<Type>>

MF_MeasureFunction

/+ pathGeometry : GM_Curve

/+ graphParameterToPoint : GM_Curve[1..*]

/+ graphParameterToMeasure : Set<MF_MeasureFunction>

+ leaf(p : Number) : DirectPosition

+ leafGeometry(p : Number) : GM_Point

+ prism() : GM_Curve

+ parameterToMeasure() : Set<MF_MeasureFunction>

+ positionAtParameter(p: Number) : MF_PositionExpression

<<Type>>

MF_OneParamGeometry

Figure 7 — Context Diagram: MF_Trajectory

6.4.2 Inheritance from MF_OneParamGeometry

The type "MF_Trajectory" inherits from the type "MF_OneParamGeometry". As such it shall implement all
inherited attributes, operations and associations.

6.4.3 Inheritance from GM_Curve

The type "MF_Trajectory" inherits from the type "GM_Curve". As such it shall implement all inherited attributes,
operations and associations. GM_Curve is described using both spatial and temporal coordinates.

6.4.4 Attribute – pathGeometry

The derived attribute "pathGeometry" of a trajectory is a spatial curve that is the projection of the trajectory
over time. No relationship to time or path orientation remains. Repeated traversal of the same place at
different times is not reflected in the resultant geometry.

MF_Trajectory::pathGeometry: GM_Curve

6.4.5 Attribute – graphParameterToPoint

The derived attribute "graphParameterToPoint" is the graph of the parameter to point function, expressed as a
set of curves in a Euclidean space. Each curve is in 2D Euclidean space mapping the parameter of the
trajectory to the "pathGeometry" curve’s “parameterization by arc length” as defined in ISO 19107. Thus, the
Euclidean space of the resultant graph curves is the set of points (p, s) where "p" is the parameter of the
trajectory and "s" is the parameter of the underlying "pathGeometry".

MF_Trajectory::graphParameterToPoint: GM_Curve[1..*]

ISO 19141:2008(E)

14 © ISO 2008 – All rights reserved

6.4.6 Attribute – graphParameterToMeasure

The derived attribute "graphParameterToMeasure" is the graph of the parameter to point function expressed
as a set of curves, each part of an MF_MeasureFunction (6.8), in a Euclidean space. Each curve is in 2D
Euclidean space mapping the parameter of the trajectory to the "pathGeometry" curves’ linear reference
measure as defined in ISO 19133.

MF_Trajectory::graphParameterToMeasure: Set<MF_MeasureFunction>

6.4.7 Operation – leaf

The operation "leaf" shall accept a value of the parameter as input and return the DirectPosition (from
ISO 19107) through which the trajectory passes at that value of the trajectory parameter.

MF_Trajectory::leaf(p: Number): DirectPosition

6.4.8 Operation – leafGeometry

The operation "leafGeometry" shall accept a value of the parameter as input and return the GM_Point that is
at that position on the trajectory.

MF_Trajectory::leafGeometry(p: Number): GM_Point

6.4.9 Operation – prism

The operation "prism" shall return the instance of GM_Curve that corresponds to the geometry of the
trajectory.

MF_Trajectory::prism(): GM_Curve

6.4.10 Operation – parameterToMeasure

The operation "parameterToMeasure" shall return an instance of GM_Curve that describes the relationship
between the parameter and measure of one or more specified LRS’s along the trajectory, using the type
MF_MeasureFunction (6.8). Each GM_Curve's coordinate reference system is the Cartesian product of the
trajectory parameter and the measure associated to its containing MF_MeasureFunction.

MF_Trajectory::parameterToMeasure(): Set<MF_MeasureFunction>

6.4.11 Operation – positionAtParameter

The operation "positionAtParameter" shall return an instance of MF_PositionExpression that describes the
position of the moving feature along the trajectory. The use of MF_PositionExpression allows the trajectory to
following existing geometry (such as a road centreline) and use offset to specify variations in any direction.
This allows the position expression to carry information about lanes in the case of land vehicles, or a
watercraft’s attitude or drift in the case of marine vehicles.

MF_Trajectory::positionAtParameter(p: Number): MF_PositionExpression

6.5 Type – MF_TemporalTrajectory

6.5.1 Class semantics

An instance of MF_TemporalTrajectory (Figure 8) is a trajectory whose parameter is time.

ISO 19141:2008(E)

© ISO 2008 – All rights reserved 15

6.5.2 Inheritance from MF_Trajectory

The type "MF_TemporalTrajectory" inherits from the type "MF_Trajectory". As such it shall implement all
inherited attributes, operations and associations.

6.5.3 Inheritance from MF_TemporalGeometry

The type "MF_TemporalTrajectory" inherits from the type "MF_TemporalGeometry". As such it shall
implement all inherited attributes, operations and associations.

6.5.4 Attribute – beginDomain

The attribute "beginDomain" shall contain the value of the time parameter at the start of the domain of the
one-parameter geometry.

MF_TemporalTrajectory::beginDomain: TM_Coordinate

NOTE This overrides the same attribute in MF_OneParamGeometry (6.2.3). Normally this would require
TM_Coordinate to be a subtype of Number, but TM_Coordinate can be expressed as a measure (which is a number, with
either an implicit or explicit unit). The specification of a particular temporal coordinate system allows a purely numeric
representation for TM_Coordinate.

6.5.5 Attribute – endDomain

The attribute "endDomain" shall contain the value of the time parameter at the end of the domain for the
trajectory.

MF_TemporalTrajectory::endDomain: TM_Coordinate

NOTE This overrides the same attribute in MF_OneParamGeometry (6.2.4).

ISO 19141:2008(E)

16 © ISO 2008 – All rights reserved

<<Type>>

MF_RigidTemporalGeometry
(from Prism Geometry)

<<Type>>

MF_TemporalTrajectory

<<Type>>

MF_TemporalGeometry

TM_GeometricPrimitive
(from Temporal Objects)

+ beginDomain : TM_Coordinate

+ endDomain : TM_Coordinate

+ graphTimeToPoint : GM_Curve[1..*]

+ graphTimeToVelocity : GM_Curve[1..*]

+ graphTimeToAcceleration : GM_Curve[1..*]

+ graphTimeToDistance : GM_Curve[1..*]

+ graphTimeToCumulativeDistance : GM_Curve[1..*]

+ pointAtTime(t : TM_GeometricPrimitive) : DirectPosition

+ timeAtPoint(p : DirectPosition) : TM_GeometricPrimitive[0..*]

+ velocity(t : TM_Coordinate) : Vector

+ acceleration(t : TM_Coordinate) : Vector

+ timeToDistance() : GM_Curve[1..*]

+ timeAtDistance(d : Distance) : TM_GeometricPrimitive[0..*]

+ cumulativeDistanceAtTime(t : TM_Coordinate) : Distance

+ timeAtCumulativeDistance(d : Distance) : TM_GeometricPrimitive

+ nearestApproach(object : GM_Object) : Distance, TM_GeometricPrimitive[1..*]

+ subTrajectory(newStartTime : TM_Coordinate, newEndTime : TM_Coordinate) : MF_TemporalTrajectory

+ timeToMeasure() : MF_MeasureFunction[0..*]

+ positionAtTime(t : TM_Coordinate) : LR_PositionExpression

+ offsetAtTime(t : TM_Coordinate) : Measure

+ secondaryOffsetAtTime(t : TM_Coordinate) : Vector

+ measureAtTime(t : TM_Coordinate) : Measure

<<Type>>

MF_Trajectory

<<DataType>>

TM_Coordinate
(from Temporal Reference System)

Figure 8 — Context Diagram: MF_TemporalTrajectory

6.5.6 Attribute – graphTimeToPoint

The attribute "graphTimeToPoint" is the graph of the time to distance function, expressed as a set of curves in
a Euclidean space. Each curve is in a 2D Euclidean space mapping time along the trajectory to the curve’s
“parameterization by arc length” as defined in ISO 19107. Since time is the parameter of a temporal trajectory,
this is the same as "graphParameterToPoint" (6.4.5).

MF_TemporalTrajectory::graphTimeToPoint: GM_Curve[1..*] =
graphParameterToPoint

6.5.7 Attribute – graphTimeToVelocity

The attribute "graphTimeToVelocity" is the graph of the time to velocity function expressed as a set of curves
in a Euclidean space. Each curve is in a (n+1)−D (where n is the coordinate dimension of the trajectory’s
velocity vector) Euclidean space mapping time along the trajectory to a velocity vector. The distance
measures to be associated to the velocity vector shall be the same as those associated to the trajectory
coordinate reference system.

MF_TemporalTrajectory::graphTimeToVelocity: GM_Curve[1..*]

ISO 19141:2008(E)

© ISO 2008 – All rights reserved 17

6.5.8 Attribute – graphTimeToAcceleration

The attribute "graphTimeToAcceleration" is the graph of the time to acceleration function, expressed as a set
of curves in a Euclidean space. Each curve is in a (n+1)−D (where n is the coordinate dimension of the
trajectory’s velocity vector) Euclidean space mapping time along the trajectory to an acceleration vector. The
distance measures to be associated to the acceleration vector shall be the same as those associated to the
trajectory coordinate reference system.

MF_TemporalTrajectory::graphTimeToAcceleration: GM_Curve[1..*]

6.5.9 Attribute – graphTimeToDistance

The attribute "graphTimeToDistance" is the graph of the time to distance, expressed as a set of curves in a
Euclidean space. Each curve is in a 2D Euclidean space mapping time along the trajectory to distance along
the trajectory’s "pathGeometry".

MF_TemporalTrajectory::graphTimeToDistance: GM_Curve[1..*]

6.5.10 Attribute – graphTimeToCumulativeDistance

The attribute "graphTimeToCumulativeDistance" is the graph of the time to cumulative distance, expressed as
a set of curves in a Euclidean space. Each curve is in a 2D Euclidean space mapping time along the trajectory
to distance along the trajectory’s "pathGeometry".

MF_TemporalTrajectory::graphTimeToCumulativeDistance: GM_Curve[1..*]

6.5.11 Operation – pointAtTime

The operation "pointAtTime" shall accept a time in the domain of the trajectory as input, and shall return the
direct position of the trajectory at that time.

MF_TemporalTrajectory::pointAtTime(t: TM_GeometricPrimitive): DirectPosition

6.5.12 Operation – timeAtPoint

The operation "timeAtPoint" shall accept a DirectPosition as input and return the set of times at which the
trajectory passes through that DirectPosition. Each value in the set returned shall be an instance of one of the
subclasses of TM_GeometricPrimitive, either a TM_Instant or a TM_Period. The use of TM_Period allows for
the description of periods of time during which the moving object remains stationary. If the point is not in the
prism of the trajectory, then the operation returns an empty set.

MF_TemporalTrajectory::timeAtPoint(p: DirectPosition):
Set<TM_GeometricPrimitive>

6.5.13 Operation – velocity

The operation "velocity" shall accept a time (TM_Coordinate) as input and return the velocity as a vector at
that time.

MF_TemporalTrajectory::velocity(t: TM_Coordinate): Vector

6.5.14 Operation – acceleration

The operation "acceleration" shall accept a time (TM_Coordinate) as input and return the acceleration as a
vector at that time.

MF_TemporalTrajectory::acceleration(t: TM_Coordinate): Vector

ISO 19141:2008(E)

18 © ISO 2008 – All rights reserved

6.5.15 Operation – timeToDistance

The operation "timeToDistance" returns a graph of the time to distance function as a set of curves in the
Euclidean space consisting of coordinate pairs of time, distance.

MF_TemporalTrajectory::timeToDistance(): GM_Curve[1..*]

EXAMPLE In Figure 9 the curve at "A" represents the time to distance function for an object that accelerates from t0

to t1, moves at constant velocity from t1 until t2, and then decelerates to a stop at t3. The curve at "B" represents the time

to distance function for an object that travels 3 times around a closed trajectory at constant velocity; the solid line

represents the distance from the origin of the trajectory, while the dashed line represents the cumulative distance travelled.

Figure 9 — Examples of time to distance curves

6.5.16 Operation – timeAtDistance

The operation "timeAtDistance" shall return an array of TM_GeometricPrimitive that lists in ascending order
the time or times a particular point (determined by the Set<Distance> in the trajectory's
GM_GenericCurve::paramForPoint(p:DirectPosition) : Set<Distance>, DirectPosition) is reached.

MF_TemporalTrajectory:: timeAtDistance(d : Distance) :
TM_GeometricPrimitive[0..*]

For a point p:DirectPosition (in the global CRS) the trajectory passes through at time t, then for each d a
distance in the trajectory's paramForPoint(p:DirectPosition).Set<Distance>, timeAtDistance(d) contains t in the
union of its primitives.

6.5.17 Operation – cumulativeDistanceAtTime

The operation "cumulativeDistanceAtTime" shall accept a time as input and return the cumulative distance
travelled (including all movements forward and retrograde as positive travel distance) from the beginning of
the trajectory at that time "t".

MF_TemporalTrajectory::cumulativeDistanceAtTime(t: TM_Coordinate): Distance

ISO 19141:2008(E)

© ISO 2008 – All rights reserved 19

6.5.18 Operation – timeAtCumulativeDistance

The operation "timeAtCumulativeDistance" shall accept a distance as input and return the time at which the
trajectory’s total length (including all movements forward and retrograde as positive travel distance) reaches
that cumulative travel distance.

MF_TemporalTrajectory::timeAtCumulativeDistance(d: Distance):
TM_GeometricPrimitive

6.5.19 Operation – nearestApproach

The operation "nearestApproach" shall return the time and distance of the nearest approach of this trajectory
to another GM_Object. If the other GM_Object is also a temporal geometry, the distance returned will be the
distance between the leaves of the two objects at the returned time.

MF_TemporalGeometry::nearestApproach(object: GM_Object): Distance,
TM_GeometricPrimitive[1..*]

6.5.20 Operation – subTrajectory

The operation "subTrajectory" shall accept two times in the domain of the trajectory and return a trajectory that
is a subset of the given trajectory for the specified time interval. The operation allows all temporal trajectory
operations to be restricted to particular time periods.

MF_TemporalTrajectory::subTrajectory(newStartTime: TM_Coordinate, newEndTime:
TM_Coordinate): MF_TemporalTrajectory

6.5.21 Operation – timeToMeasure

The operation "timeToMeasure" shall return a set of MF_MeasureFunctions that associate time to position
within a linear reference system.

MF_TemporalTrajectory::timeToMeasure(): Set<MF_MeasureFunction>

6.5.22 Operation – positionAtTime

The operation "positionAtTime" shall accept a time in the domain of the trajectory and return the position of
the moving feature on the trajectory at that time, expressed as a linear reference system position.

MF_TemporalTrajectory::positionAtTime(t: TM_Coordinate):
LR_PositionExpression

6.5.23 Operation – offsetAtTime

The operation "offsetAtTime" shall accept a time in the domain of the trajectory and return the offset position
on the trajectory at that time, expressed as the offset measure for a linear reference system.

MF_TemporalTrajectory::offsetAtTime(t: TM_Coordinate): Measure

6.5.24 Operation – secondaryOffsetAtTime

The operation "secondaryOffsetAtTime" shall accept a time in the domain of the trajectory and return the
secondary offset position of the trajectory at that time, expressed as vector of measures.

MF_TemporalTrajectory::secondaryOffsetAtTime(t: TM_coordinate): Vector

ISO 19141:2008(E)

20 © ISO 2008 – All rights reserved

6.5.25 Operation – measureAtTime

The operation "measureAtTime" shall accept a time in the domain of the trajectory and return the position of
the trajectory at that time, expressed as a linear reference system measure.

MF_TemporalTrajectory::measureAtTime(t: TM_Coordinate): Measure

6.6 Class – MF_PositionExpression

6.6.1 Class semantics

The type "MF_PositionExpression" (Figure 10) extends LR_PositionExpression to allow for use of existing
geometry for moving features that may vary from the "default course" by drifting around the nominal route by
potentially complex, temporally varying offsets.

<<Type>>

LR_PositionExpression
(from Linear Reference Systems)

<<Type>>

MF_SecondaryOffset

MF_PositionExpression 0..*

+secondaryOffset

Figure 10 — Context Diagram: MF_PositionExpression

6.6.2 Inheritance from LR_PositionExpression

The type "MF_PositionExpression" inherits from the type "LR_PositionExpression". As such it shall implement
all attributes, operations and associations inherited from that type as specified in ISO 19133.

6.6.3 Association Role – secondaryOffset

The optional association role "secondaryOffset" allows the MF_PositionExpression instances to express
complex offsets in any dimension, as opposed to the offset of normal LRS’s which are usually restricted to left-
right offsets in a 2-dimensional space.

MF_PositionExpression::secondaryOffset[0..*]: MF_SecondaryOffset

6.7 Type – MF_SecondaryOffset

6.7.1 Class semantics

The type "MF_SecondaryOffset" (Figure 11) describes an offset in any direction from the geometry identified
as the "default course" of the moving object.

<<Type>>

LR_OffsetExpression
(from Linear Reference Systems)

<<Type>>

MF_SecondaryOffset <<Type>>

Vector
(from Numerics)+ offsetVector : Vector

Figure 11 — Context Diagram: MF_SecondaryOffset

ISO 19141:2008(E)

© ISO 2008 – All rights reserved 21

6.7.2 Attribute – offsetVector

The attribute "offsetVector" describes the magnitude and direction of the offset.

MF_SecondaryOffset::offsetVector: Vector

6.8 Type – MF_MeasureFunction

6.8.1 Class semantics

The type "MF_MeasureFunction" (Figure 12) is used by a temporal trajectory to express position of a moving
feature by use of a linear reference system, as defined in 19133 and extended by MF_PositionExpression
in 6.6.

<<Type>>

LR_LinearReferenceMethod
(from Linear Reference Systems)

<<Type>>

MF_MeasureFunction

<<Type>>

GM_Curve
(from Geometric primitive)

+ graphOfMeasure : GM_Curve[1..*]

+ graphOfOffsets[0..1] : GM_Curve[1..*]

+ graphOfSecondaryOffsets[0..1] : GM_Curve[1..*]

+ geometry : LR_Element

+ range : LR_LinearReferenceMethod

<<Type>>

LR_Element
(from Linear Reference Systems)

Figure 12 — Context Diagram: MF_MeasureFunction

6.8.2 Attribute – graphOfMeasure

The attribute "graphOfMeasure" is the graph of the time to measure as a set of curves in a Euclidean space.
Each curve is in a 2D Euclidean space mapping time along the trajectory to measure along the
MF_MeasureFunction "pathGeometry".

MF_MeasureFunction::graphOfMeasure: GM_Curve[1..*]

6.8.3 Optional attribute – graphOfOffset

The optional attribute "graphOfOffset" is a set of curves that represent the left-right deviations of the trajectory
from the default course.

MF_MeasureFunction::graphOfOffset[0..1]: GM_Curve[1..*]

6.8.4 Optional attribute – graphOfSecondaryOffsets

The optional attribute "graphOfSecondaryOffsets is a set of curves that represent the deviations in any
direction of the trajectory from the default course.

MF_MeasureFunction::graphOfSecondaryOffsets[0..1]: GM_Curve[1..*]

EXAMPLE The planned route for an aircraft might be a geodesic curve at constant elevation. Because of air
turbulence, the actual path travelled by the aircraft will deviate at random from the planned route. The
graphOfSecondaryOffsets will record those deviations.

6.8.5 Attribute – geometry

The attribute "geometry" contains the underlying curvilinear geometry upon which the measures in the linear
reference system are taken.

MF_MeasureFunction::geometry: LR_Element

ISO 19141:2008(E)

22 © ISO 2008 – All rights reserved

6.8.6 Attribute – range

The attribute "range" contains the linear reference system used by a temporal trajectory to express position of
a moving feature.

MF_MeasureFunction::range: LR_LinearReferenceMethod

7 Package – Prism Geometry

7.1 Package structure

The package Prism Geometry (Figure 13) contains five types used to describe the prism of a moving
geometric object. MF_RigidTemporalGeometry (Figure 19) specializes MF_PrismGeometry, which in turn
specializes MF_TemporalGeometry for the case of an object that moves without deformation. The remaining
classes support description of the possible rotation of such an object.

<<Type>>

MF_TemporalGeometry
(from Geometry Types)

+ leafGeometry(m : TM_Coordinate) : GM_Object

+ trajectory(point : DirectPosition, p : TM_Coordinate) : MF_TemporalTrajectory

+ startTime() : TM_Coordinate

+ endTime() : TM_Coordinate

+ nearestApproach(object : GM_Object, timeInterval : TM_Period) : Distance, TM_GeometricPrimitive[1..*]

+ intersection(object : GM_Object, timeInterval : TM_Period) : MF_TemporalGeometry

<<Type>>

MF_PrismGeometry

+ globalAxis[1..3] : MF_GlobalAxisName = [tangent, up, right]

+ controlOrientation[0..*] : MF_TemporalOrientation

+ geometryAtTime(t : TM_Coordinate) : GM_Geometry

+ localCoordinateSystem () : SC_CRS

+ rotationAtTime(t : TM_Coordinate) : MF_RotationMatrix

<<Type>>

GM_AffinePlacement
(from Coordinate geometry)

+ location : GM_Position

+ refDirection[1..*] : Vector

+ inDimension() : Integer

+ outDimension() : Integer

+ transform(in : Vector) : Vector

<<CodeList>>

MF_GlobalAxisName

+ tangent

+ backtangent

+ normal

+ bearing

+ up = binormal

+ down

+ right

+ left

+ axis1

+ negativeAxis1

+ axis2

+ negativeAxis2

+ axis3

+ negativeAxis3

<<Type>>

MF_RigidTemporalGeometry

+ baseGeometry : GM_Object

<<Type>>

MF_TemporalOrientation

+ rotation : MF_RotationMatrix

+ time : TM_Coordinate

<<Type>>

MF_LocalGeometry

+ origin : DirectPosition

+ axis[0..3] : Vector

<<Type>>

MF_RotationMatrix

+ axis[1..*] : Vector

+ transform(p : Vector) : Vector

<<Union>>

GM_Position
(from Coordinate geometry)

+ direct . DirectPosition

+ indirect : GM_PointRef

<<Interface>>

GM_Placement
(from Coordinate geometry)

+ inDimension() : Integer

+ outDimension() : Integer

+ transform(in : Vector) : Vector

Figure 13 — Classes of the Prism Geometry package

ISO 19141:2008(E)

© ISO 2008 – All rights reserved 23

7.2 CodeList – MF_GlobalAxisName

7.2.1 Class semantics

The code list "MF_GlobalAxisName" (Figure14) names the usual global axes. They are normally either in
terms of the moving frame of the curve, or in terms of the external CRS in which the geometry of the curve is
defined (Figure 15). The moving frame of the curve is a right-handed set of independent vectors that are a
basis for a local Euclidean vector space equal to the tangent space of the CRS (3D) at the points along the
curve. It shall consist of a tangent to the curve, a normal vector pointing to the left of this tangent, and their
cross product, which is a "near" upward normal to the curve. If the original CRS is 2D, this third vector is the
local up of the underlying CRS surface. If only the first axis is given, it must be horizontal, with the third axis
vector shall be assumed to be the local "up" and the second axis vector shall be the cross product of the other
two (v2 = v3 x v1). The external CRS is usually an earth-fixed geographic CRS, but this International Standard
does not require that it be such. Steerable objects may work best with the moving frame: front (which usually
maps to the tangent), up, and right. Non-steered objects may work best with the tangents to the coordinate
curves of the external CRS.

<<CodeList>>

MF_GlobalAxisName

+ tangent

+ backTangent

+ bearing

+ up

+ down

+ right

+ left

+ axis1

+ negativeAxis1

+ axis2

+ negativeAxis2

+ axis3

+ negativeAxis3

Figure 14 — Context Diagram: MF_GlobalAxisName

Figure 15 — Global and local axes

ISO 19141:2008(E)

24 © ISO 2008 – All rights reserved

7.2.2 Attribute – tangent

The "tangent" vector represents the geometric unit tangent to the curve. It always points in the forward
direction of the curve's underlying "parameterization by length" as defined in ISO 19107. This is not the
tangent to the motion of the object. If the object backtracks the curve, the forward unit tangent of the object will
be the negative of the curve's tangent.

MF_GlobalAxisName::tangent

7.2.3 Attribute – backTangent

The "backTangent" vector is the negative of the tangent to the curve.

MF_GlobalAxisName::backtangent

7.2.4 Attribute – bearing

The bearing is the projection of the tangent to the curve onto the horizontal plane of the external CRS. If the
curve is perfectly vertical, the bearing is undefined. Curves that go perfectly vertical should not use bearing.

MF_GlobalAxisName::bearing

7.2.5 Attribute – up

This "up" vector is the local up as in elevation. The vector up is the cross product of the tangent and left. It
represents the up for the moving feature, which may be the up for the external coordinate reference system if
the curve is locally on a surface of constant elevation.

MF_GlobalAxisName::up = binormal

7.2.6 Attribute – down

This "down" vector is the negative of "up".

MF_GlobalAxisName::down

7.2.7 Attribute – right

This "right" vector is the cross product of "tangent" and "up" and the negative of "left".

MF_GlobalAxisName::right

7.2.8 Attribute – left

The "left" vector is the unit vector point to the left of the curve. As such the left is the cross product of "up" and
the "tangent". "Left" is the negative of "right".

MF_GlobalAxisName::left

7.2.9 Attribute – axis1

The vector "axis1" is the first coordinate axis of the external CRS. In other words, it is the unit tangent to the
curve created by increasing the first coordinate while keeping the others constant.

MF_GlobalAxisName::axis1

ISO 19141:2008(E)

© ISO 2008 – All rights reserved 25

7.2.10 Attribute – negativeAxis1

The vector "negativeAxis1" is negative of the first coordinate axis of the external CRS. In other words, it is the
unit tangent to the curve created by decreasing the first coordinate while keeping the others constant.

MF_GlobalAxisName::negativeAxis1

7.2.11 Attribute – axis2

The vector "axis2" is the second coordinate axis of the external CRS. In other words, it is the unit tangent to
the curve created by increasing the second coordinate while keeping the others constant.

MF_GlobalAxisName::axis2

7.2.12 Attribute – negativeAxis2

The vector "negativeAxis2" is negative of the second coordinate axis of the external CRS. In other words, it is
the unit tangent to the curve created by decreasing the second coordinate while keeping the others constant.

MF_GlobalAxisName::negativeAxis2

7.2.13 Attribute – axis3

The vector "axis3" is the third coordinate axis of the external CRS. In other words, it is the unit tangent to the
curve created by increasing the third coordinate while keeping the others constant. If the CRS is 2D, then this
is the upward unit vector perpendicular to the defining surface of the 2D CRS. It should be used when placing
3D moving feature icons on a 2D map.

MF_GlobalAxisName::axis3

7.2.14 Attribute – negativeAxis3

The vector "negativeAxis3" is negative of the third coordinate axis of the external CRS. In other words, it is the
unit tangent to the curve created by decreasing the third coordinate while keeping the others constant. If the
CRS is 2D, then this is the downward unit vector perpendicular to the defining surface of the 2D CRS. It
should be used when placing 3D moving feature icons on a 2D map.

MF_GlobalAxisName::negativeAxis3

7.3 Type – MF_LocalGeometry

7.3.1 Class semantics

The type "MF_LocalGeometry" (Figure 16) is a geometric object in a design coordinate reference system
(usually 3D). Instances of this type are used to define the local geometry of the moving object (Figure 17). For
"iconized" representations, a 2D design coordinate reference system might be used. The design coordinate
reference system is accessible through the Coordinate Reference System association inherited from
GM_Object.

ISO 19141:2008(E)

26 © ISO 2008 – All rights reserved

<<Type>>

GM_Object
(from Geometry root)

<<DataType>>

DirectPosition
(from Coordinate geometry)

<<Type>>

MF_LocalGeometry

+ origin : DirectPosition

+ axis[0..3] : Vector

<<Type>>

Vector
(from Numerics)

Figure 16 — Context Diagram: MF_LocalGeometry

Figure 17 — Local geometry

7.3.2 Inheritance from GM_Object

The type "MF_LocalGeometry" inherits from the type "GM_Object". As such it shall implement all inherited
attributes, operations and associations.

7.3.3 Attribute – origin

The attribute "origin" describes a point on the local geometry that will act as a placement point into geographic
space. This point is chosen by the application usually for ease of calculations. Common choices for an origin
might be centre of gravity or centre of footprint. The returned direct position is in the design coordinate
reference system of the MF_LocalGeometry.

MF_LocalGeometry::origin: DirectPosition

7.3.4 Optional attribute – axis

The attribute "axis" lists up to three local axes that will be used in describing the local object's orientation (and
scale) when it is embedded in geographic space. These axes shall be specified as vectors centred on the
"origin" as described in 7.3.3 and are referenced to the design coordinate reference system of the
MF_LocalGeometry. When not given, the axis array shall be assumed to be the coordinate axis of the design
coordinate reference system.

MF_LocalGeometry::axis[0..3]: Vector

ISO 19141:2008(E)

© ISO 2008 – All rights reserved 27

7.4 Type – MF_PrismGeometry

7.4.1 Class semantics

The type "MF_PrismGeometry" (Figure 18) represents the movement of an object through geographic space.
This International Standard only considers the case where the operation "geometryAtTime" is a constant (that
is, where the object's basic shape is immutable over time).

<<Type>>

MF_PrismGeometry

+ globalAxis[1..3] : MF_GlobalAxisName = [tangent, up, right]

+ controlOrientation[0..*] : MF_TemporalOrientation

+ geometryAtTime(t : TM_Coordinate) : GM_Object

+ localCoordinateSystem () : SC_CRS

+ rotationAtTime(t : TM_Coordinate) : MF_RotationMatrix

<<Type>>

MF_TemporalGeometry
(from Geometry Types)

<<CodeList>>

MF_GlobalAxisName

+ tangent

+ backtangent

+ normal

+ bearing

+ up = binormal

+ down

+ right

+ left

+ axis1

+ negativeAxis1

+ axis2

+ negativeAxis2

+ axis3

+ negativeAxis3

<<Type>>

MF_RigidTemporalGeometry

+ baseGeometry : GM_Object

<<Type>>

MF_TemporalTrajectory
(from Geometry Types)

<<Type>>

MF_TemporalOrientation

1

+originTrajectory

Figure 18 — Context Diagram: MF_PrismGeometry

7.4.2 Inheritance from MF_TemporalGeometry

The type "MF_PrismGeometry" inherits from the type "MF_TemporalGeometry". As such it shall implement all
inherited attributes, operations and associations.

7.4.3 Association Role – originTrajectory

The association role "originTrajectory" is the trajectory curve of the origin of the local geometry (7.3.3).

MF_PrismGeometry::originTrajectory: MF_TemporalTrajectory

7.4.4 Attribute – globalAxis

The attribute "globalAxis" is the global, possibly moving, geometric coordinate frame (7.2) in which the rotation
and scaling of the base geometry is defined. The default values are the axes of the moving frame of the curve.

MF_PrismGeometry::globalAxis[1..3]: MF_GlobalAxisName =
[tangent, up, right]

ISO 19141:2008(E)

28 © ISO 2008 – All rights reserved

7.4.5 Optional attribute – controlOrientation

The attribute "controlOrientation" array contains some number of rotational positions distributed along the
curve by time. A method of interpolation used between these orientations is described in Annex C.

MF_PrismGeometry::controlOrientation[0..*]: MF_TemporalOrientation

7.4.6 Operation – geometryAtTime

The operation "geometryAtTime" shall accept a time in the domain of the prism geometry and return the
geometry of the moving feature, as it is at a given time in the global coordinate reference system. This shape
might be a realistic rendition of the object, or it may be an iconized rendition of the type of object, as needed
by the application. For example, in a simulation a truck might be represented as an icon as opposed to a
photorealistic rendition. This allows the application to use the local geometry to convey information such as
certainty of identification or feature status through the use of appropriate icons and other portrayal parameters.

MF_PrismGeometry::geometryAtTime(t: TM_Coordinate): GM_Object

7.4.7 Operation – localCoordinateSystem

The operation "localCoordinateSystem" shall return a SC_CRS for the design coordinate reference system in
which the moving feature's shape is defined.

MF_PrismGeometry::localCoordinateSystem(): SC_CRS

7.4.8 Operation – rotationAtTime

The operation "rotationAtTime" shall accept a time in the domain of the prism geometry and return the rotation
matrix that embeds the local geometry into geographic space at a given time (TM_Coordinate). The vectors of
the rotation matrix allow the feature to be aligned and scaled as appropriate to the vectors of the global "map"
coordinate reference system. Because scale may change in complex ways as a feature moves with respect to
a projected coordinate reference system, the rotation matrix may also contain scale factors. These should be
used to prevent apparent deformation of the moving feature. The operation shall return an error message if
the input time is not within the domain.

MF_PrismGeometry::rotationAtTime(t: TM_Coordinate): MF_RotationMatrix

7.5 Type – MF_RigidTemporalGeometry

7.5.1 Class semantics

The type "MF_RigidTemporalGeometry" (Figure 19) describes the motion of a rigid body, one that may be
translated or rotated, but which does not change shape – it remains congruent to its base representation. In
OCL this would say:

{baseGeometry = geometryAtTime(beginDomain)}

ISO 19141:2008(E)

© ISO 2008 – All rights reserved 29

<<Type>>

MF_TemporalGeometry
(from Geometry Types)

<<Type>>

MF_RigidTemporalGeometry

+ baseGeometry : GM_Object

<<Type>>

MF_TemporalTrajectory
(from Geometry Types)

<<Type>>

MF_TemporalOrientation

<<Type>>

GM_Object
(from Geometry root)

<<Type>>

MF_PrismGeometry

{[MF_TemporalGeometry::leafGeometry(t).is TypeOf (GM_Point)

AND

MF_TemporalGeometry::leafGeometry(t).position() = MF_Trajectory::leaf(t)]}

{baseGeometry =

geometryAtTime(beginDomain)}

Figure 19 — Context Diagram: MF_RigidTemporalGeometry

7.5.2 Inheritance from MF_PrismGeometry

The type "MF_RigidTemporalGeometry" inherits from the type "MF_PrismGeometry". As such it shall
implement all inherited attributes, operations and associations (7.4).

7.5.3 Inheritance from MF_TemporalTrajectory

The type "MF_RigidTemporalGeometry" inherits from the type "MF_TemporalTrajectory". As such it shall
implement all inherited attributes, operations and associations (6.5).

7.5.4 Attribute – baseGeometry

The attribute "baseGeometry" is the geometry of the moving object in a local rectangular coordinate reference
system based on the axis of the object. The object should have a natural up, front and right (cross product of
up and front). If the representation to be used is not "centred" on its origin, the application should use an
MF_LocalGeometry (7.3) subclass to create a local origin.

MF_RigidTemporalGeometry::baseGeometry: GM_Object

7.6 Type – MF_RotationMatrix

7.6.1 Class semantics

The type "MF_RotationMatrix" (Figure 20) is designed to capture the changing orientation of the local frame of
the object in terms of the global frame. The frames are defined in the MF_PrismGeometry (7.4) type, by the
"localCoordinateSystem" operation and the "globalAxis" attributes. In this International Standard, this matrix
includes both rotation and scale factors to compensate for the differences in the scale of the local engineering
coordinate reference system and the global geographic coordinate reference system.

ISO 19141:2008(E)

30 © ISO 2008 – All rights reserved

<<Type>>

MF_RotationMatrix

+ axis[1..*] : Vector

<<Type>>

Vector
(from Numerics)

Figure 20 — Context Diagram: MF_RotationMatrix

7.6.2 Attribute – axis

The attribute "axis" shall contain the coordinates of the localAxis array in terms of the globalAxis array as an
orthogonal matrix. The first two vectors should be orthogonal (have a zero vector dot product). The third axis
should be the cross product of the first two. If not all axes are present, these facts or some other default
mechanism should be able to calculate them. The dimension of the matrix is limited to three in most moving
object applications, but the type can be extended to higher dimension if other data (velocities for example) are
captured.

MF_RotationMatrix::axis[1..*]:Vector

7.7 Type – MF_TemporalOrientation

7.7.1 Class semantics

The type "MF_TemporalOrientation" (Figure 21) is designed to capture the rotational motion of the object as it
passes along its trajectory. As such, it contains information on scale and orientation at a particular time. The
"controlOrientation" (7.4.5) array in MF_PrismGeometry aggregates these orientations for interpolation by the
application.

<<Type>>

MF_TemporalOrientation

+ rotation : MF_RotationMatrix

+ time : TM_Coordinate

<<DataType>>

TM_Coordinate
(from Temporal Reference System)

<<Type>>

MF_RotationMatrix

Figure 21 — Context Diagram: MF_TemporalOrientation

7.7.2 Attribute – rotation

The attribute "rotation" shall contain a rotational, and potentially scaling, matrix or its equivalent for a particular
time.

MF_TemporalOrientation::rotation: MF_RotationMatrix

7.7.3 Attribute – time

The attribute "time" shall contain the time at which the rotation matrix is valid.

MF_TemporalOrientation::time: TM_Coordinate

8 Moving features in application schemas

8.1 Introduction

ISO 19109 specifies rules for developing schemas to specify the feature types, characteristics, and
relationships needed to support particular applications. Application schemas are to be built upon a framework
of concepts specified in base standards such as this International Standard. ISO 19109 was published before

ISO 19141:2008(E)

© ISO 2008 – All rights reserved 31

work began on this International Standards, so it provides no specific rules for specifying moving features in
application schemas. This clause states some requirements for doing so.

8.2 Representing the spatial characteristics of moving features

ISO 19109 requires that the spatial characteristics of a feature be represented by a GM_Object or a
TP_Object used as a data type for an appropriately defined feature attribute. The principal types specified in
this International Standard are subclassed from GM_Object (Figure 3). An application schema that includes
moving feature types shall use realizations of the types specified in this International Standard to represent
the spatial characteristics of such feature types.

8.3 Associations of moving features

Associations may influence or depend upon movement of features. Such associations may be modelled at the
feature level, or at the level of the class that represents the spatial characteristics of the moving feature.

Movement of a feature may be constrained by its associations with other feature instances or feature types. In
such cases, the application schema shall specify an association between the trajectory of the moving feature
and the GM_Object that represents the spatial characteristics of the constraining feature and specify an
appropriate constraint.

EXAMPLE 1 Motion of a vehicle type might be constrained to a road network. This could be modelled as an
association between the trajectory of the vehicle and the GM_Complex representing the road network, with a constraint
stating that the GM_Curve underlying the trajectory shall equal a GM_Curve (most likely a composite curve containing
links and partial links in the road network, representable by an NT_Route, see ISO 19133) within the road network (an
implementation of 19133:NT_Network).

Moving features may participate in associations with other moving features as well as with immobile features.
In this case, an application schema shall specify an association between the feature types as an association
class with a temporal attribute that contains the duration of the association.

EXAMPLE 2 Trucks in a convoy participate in a set of associations with the other trucks in that convoy.

8.4 Operations of moving features

Application schemas will often specify operations for particular moving feature types that involve the spatial
and temporal relationships of the moving feature to other features. Such operations shall make use of the
results of the basic geometric operations specified in this International Standard and in ISO 19107 and
ISO 19108. Documentation of such feature operations shall include a description of the dependencies upon
the basic geometric operations.

EXAMPLE Consider an aircraft route planning application that has a requirement to determine the times at which an
aircraft following a planned route will be under the control of different air traffic control centres. If the route is modelled as a
realization of MF_TemporalTrajectory and air traffic control zones are modelled as realizations of GM_Solid, an operation
defined for the planned route might make use of the 'union' operation specified in ISO 19107 to determine the sub-
trajectory of the route that lies within a given air traffic control zone, and then apply the 'startTime' and 'endTime'
operations specified in this International Standard to arrive at the range of time during which the aircraft is within that air
traffic control zone.

ISO 19141:2008(E)

32 © ISO 2008 – All rights reserved

Annex A
(normative)

Abstract test suite

A.1 Application schemas for data transfer

A.1.1 Transfer of trajectory data

a) Test Purpose: Verify that an application schema for transfer of the trajectories of moving features satisfies
the minimum requirements for specifying the trajectory of each moving feature.

b) Test Method: Inspect the application schema to ensure that the specification of each moving feature type
includes an association to a realization of MF_TemporalTrajectory with the attributes beginDomain,
endDomain, and graphTimeToDistance as well as the attribute pathGeometry inherited from
MF_Trajectory. If the trajectory is constrained to follow a linear feature that has a specified LRS, ensure
that the realization of MF_TemporalTrajectory also includes the attribute graphParameterToMeasure
inherited from MF_Trajectory.

c) Reference: 6.4, 6.5, 6.8

d) Test Type: Capability

A.1.2 Transfer of prism geometry data

a) Test Purpose: Verify that an application schema for transfer of the prism geometry of moving features
satisfies the minimum requirements for specifying the prism of each moving feature.

b) Test Method: Inspect the application schema to ensure that the specification of each moving feature type
satisfies the requirements of A.1.1 and also includes an association to a realization of
MF_RigidTemporalGeometry with the attribute baseGeometry as well as the attributes globalAxis and
controlOrientation inherited from MF_PrismGeometry.

c) Reference: 7.4, 7.5, 7.6, 7.7

d) Test Type: Capability

A.2 Application schemas for data with operations

A.2.1 Data with operations on trajectories

a) Test Purpose: Verify that an application schema that supports operations on the trajectories of moving
features satisfies the minimum requirements for specifying the trajectory of each moving feature.

b) Test Method: Inspect the application schema to ensure that the specification of each moving feature type
includes an association to a realization of MF_TemporalTrajectory that includes all attributes and
associations and supports all operations specified for that type and inherited from its supertypes.

c) Reference: Clause 7

d) Test Type: Capability

ISO 19141:2008(E)

© ISO 2008 – All rights reserved 33

A.2.2 Data with operations on prism geometry

a) Test Purpose: Verify that an application schema that supports operations on the prisms of moving
features satisfies the minimum requirements for specifying the prism of each moving feature.

b) Test Method: Inspect the application schema to ensure that the specification of each moving feature type
includes an association to a realization of MF_RigidBody that includes all attributes and associations and
supports all operations specified for that type and inherited from its supertypes.

c) Reference: Clause 8

d) Test Type: Capability

ISO 19141:2008(E)

34 © ISO 2008 – All rights reserved

Annex B
(informative)

UML Notation

B.1 Introduction

This annex provides a brief description of UML notation as used in the UML diagrams in this International
Standard.

B.2 Class

A UML class (Figure B.1) represents a concept within the system being modelled. It is a description of a set of
objects that share the same attributes, operations, methods, relationships, and semantics. A class is drawn as
a solid-outline rectangle with three compartments separated by horizontal lines. The top name compartment
holds the class name and other general properties of the class (including stereotype); the middle list
compartment holds a list of attributes; the bottom list compartment holds a list of operations. The attribute and
operation compartments may be suppressed to simplify a diagram. Suppression does not indicate that there
are no attributes or operations.

ClassName

+ attributeName : DataType

Note

+ operationName(parameterName1 : DataType) : Output Data Type

{Constraint}

Figure B.1 — UML Class

ISO/TS 19103 specifies that a class name shall include no blank spaces and that individual words in the name
shall begin with capital letters.

B.3 Stereotype

Stereotypes extend the semantics, but not the structure of pre-existing types and classes. Class level
stereotypes used in this International Standard include:

<<Type>> is a stereotype of class defined by ISO/IEC 19501. A Type is used to specify a domain of objects
together with operations applicable to the objects without defining the physical implementation of those
objects. It may also have attributes and associations that are defined solely for the purpose of specifying the
behaviour of the type's operations and do not represent any actual implementation of state data.

<<Interface>> is a stereotype of class defined by ISO/IEC 19501. An Interface contains a set of operations
that together define a service offered by a class realizing the interface. A class may realize several Interfaces,
and several classes may realize the same Interface. Interfaces may not have attributes, associations, or
methods. An Interface may participate in an association provided the Interface cannot see the association;

ISO 19141:2008(E)

© ISO 2008 – All rights reserved 35

that is, a class (other than another Interface) may have an association to an interface that is navigable from
the class but not from the Interface.

<<DataType>> is a descriptor of a set of values that lack identity (independent existence and the possibility of
side effects). Data types include primitive predefined types and user-definable types. A DataType is thus a
class with few or no operations whose primary purpose is to hold the abstract state of another class for
transmittal, storage, encoding or persistent storage.

<<Enumeration>> is a data type whose instances form a list of named literal values. Both the enumeration
name and its literal values are declared. Enumeration means a short list of well-understood potential values
within a class. Classic examples are Boolean that has only 2 (or 3) potential values TRUE, FALSE (and
NULL). Most enumerations will be encoded as a sequential set of Integers, unless specified otherwise. The
actual encoding is normally only of use to the programming language compilers.

<<CodeList>> defined in ISO/TS 19103 is a flexible enumeration that uses string values through a binding of
the Dictionary type key and returns values as string types; e.g. Dictionary (String, String). Code lists are useful
for expressing a long list of potential values. If the elements of the list are completely known, an enumeration
shall be used; if the only likely values of the elements are known, a code list shall be used. Enumerated code
lists may be encoded according to a standard, such as ISO 3166-1. Code lists are more likely to have their
values exposed to the user, and are therefore often mnemonic. Different implementations are likely to use
different encoding schemes (with translation tables back to other encoding schemes available).

<<Union>> defined in ISO 19107, is a type consisting of one and only one of several alternatives (listed as
member attributes). This is similar to a discriminated union in many programming languages. In some
languages using pointers, this requires a "void" pointer that can be cast to the appropriate type as determined
by a discriminator attribute.

B.4 Attribute

An attribute represents a characteristic common to the objects of a class. An attribute is specified by a text
string that can be parsed into elements that describe the properties of the attribute:

visibility name [multiplicity]: type-expression = initial-value

where:

visibility may be public (indicated by “+”) or private (indicated by “−”).

name is a character string. ISO/TS 19103 specifies that an attribute name shall include no blank spaces, that
it shall begin with a lower case letter, and that individual words in the name, following the first word, shall
begin with upper case letters.

multiplicity specifies the number of values that an instance of a class may have for a given attribute. Notation
for multiplicity is explained in B.10.

type-expression identifies the data type of the attribute.

initial value specifies the default value for the attribute.

B.5 Operation

An operation represents a service that can be requested from an object. An operation is specified by a text
string that can be parsed into elements that describe the properties of the operation:

visibility name (parameters): output parameter(s)

ISO 19141:2008(E)

36 © ISO 2008 – All rights reserved

where:

visibility may be public (indicated by “+”) or private (indicated by “−”).

name is a character string. ISO/TS 19103 specifies that an operation name shall include no blank spaces, that
it shall begin with a lower case letter, and that individual words in the name, following the first word, shall
begin with upper case letters.

parameters is a list of parameters, each described by a parameter name and data type. These are assumed
to be input parameters unless otherwise specified.

output parameter(s) is a list of returned values, each described by a data type.

B.6 Constraint

A constraint specifies a semantic condition or restriction. Although ISO/IEC 19501 specifies and Object
Constraint Language for writing constrains, a constraint may be written using any formal notation, or a natural
language. A constraint is shown as a text string in braces { }. It is placed near the element to which it applies.
If the notation for an element is a text string (such as an attribute), the constraint string may follow the element
text string in braces. A constraint included as an element in a list applies to all subsequent elements in the list,
down to the next constraint element or the end of the list.

B.7 Note

A note contains textual information. It is shown as a rectangle with a “bent corner” in the upper right corner,
attached to zero or more model elements by a dashed line. Notes may be used to contain comments or
constraints.

B.8 Association

An association (Figure B.2) is a semantic relationship between classes that specifies connections between
their instances. An association is drawn as a solid line connecting to class rectangles. An association may
have a name, represented as a character string placed near the line, but not close to either end.
ISO/TS 19103 specifies that an attribute name shall include no blank spaces and that individual words in the
name shall begin with upper case letters. The association ends are adorned with information pertinent to the
class at that end of the association, including multiplicity and role name.

Beta
0..1

0..*

Association Name

roleAlpha
Alpha

roleBeta

Figure B.2 — UML Associations

B.9 Role name

A role name adorning an association end specifies behaviour of the class at that end with respect to the class
at the other end of the association. In Figure B.2, roleAlpha describes the role that the class named Alpha has
with respect to the class named Beta. A role name is represented as a Character String. ISO/TS 19103
specifies that a role name shall include no blank spaces, that it shall begin with a lower case letter, and that
individual words in the name, following the first word, shall begin with upper case letters.

ISO 19141:2008(E)

© ISO 2008 – All rights reserved 37

B.10 Multiplicity

Multiplicity specifies the number of instances of a class that may be associated with a class at the other end of
the association. The values shown in Figure B.3 are all valid. They have the following meanings:

a) zero or one instance of Alpha may be associated with one instance of Beta,

b) zero or more instances of Beta may be associated with one instance of Alpha,

c) one and only one instance of Gamma may be associated with one instance of Delta,

d) n being an integer number, n and only n instances of Delta may be associated with one instance of
Gamma,

e) n1 and n2 being integer numbers, with n2>n1, the number of instances of Epsilon that may be associated
with an instance of Phi may be within the range n1 to n2,

f) n being an integer number, n or more instances of Phi may be associated with one instance of Epsilon.

PhiEpsilon

DeltaGamma

Beta
0..1

0..*

1

n1..n2

n..*

Alpha

n

Figure B.3 — UML Multiplicity

B.11 Navigability

An arrow may be attached to the end of an end of an association path to indicate that navigation is supported
toward the class attached to the arrow. For example, in Figure B.4, the association is navigable from user to
supplier. This means that an instance of the class Phi has access to information held in an instance of the
class Epsilon. For example, an operation specified for Phi might use the value of an attribute of Epsilon.

PhiEpsilon
0..1

0..*supplier

user

Figure B.4 — UML Navigability

B.12 Aggregation

Associations may be used to show aggregation or composition relationships between classes. An open
diamond on an association end indicates that the class at that end of the association is an aggregate of
instances of the class at the other end of the association. For example, the class named Gamma, in
Figure B.5, is an aggregate of zero or more instances of the class named Delta. Aggregation is considered a
weak form of composition. The members of an aggregation may exist independently of the aggregation, and
may be members of more than one aggregation.

ISO 19141:2008(E)

38 © ISO 2008 – All rights reserved

PhiEpsilon

DeltaGamma

1..1

0..*

0..*0..*

Figure B.5 — Aggregation and Composition

B.13 Composition

A closed diamond on an association end indicates that the class at that end of the association is composed of
instances of the class at the other end of the association. For example, the class named Epsilon in Figure B.5
is composed of zero or more instances of the class named Phi. Members of a composite may not exist
independently of the composite class, nor may they be members of more than one composite class.

B.14 Dependency

A dependency states that the implementation or functioning of one or more elements requires the presence of
one or more other elements. A dependency indicates a semantic relationship between two model elements (or
two sets of model elements). It relates the model elements themselves and does not require a set of instances
for its meaning. A dependency is shown as a dashed arrow between two model elements. The model element
at the tail of the arrow (the client) depends on the model element at the arrowhead (the supplier). The kind of
dependency may be indicated by a keyword in guillemets, such as <<import>>, <<refine>>, or <<use>>. In
the example of Figure B.6, Epsilon has a <<use>> dependency upon Phi.

PhiEpsilon
<<use>>

Figure B.6 — Dependency

B.15 Generalization

GammaBeta

Alpha

Figure B.7 — UML Generalization

ISO/IEC 19501 defines generalization (Figure B.7) as a taxonomic relationship between a more general
element and a more specific element. The more specific element is fully consistent with the more general
element and contains additional information. An instance of the more specific element may be used where the
more general element is allowed. Generalization is shown as a solid-line path from the child (the more specific
element, such as a subclass) to the parent (the more general element, such as a superclass), with a large
hollow triangle at the end of the path where it meets the more general element.

ISO 19141:2008(E)

© ISO 2008 – All rights reserved 39

B.16 Realization

Realization specifies a realization relationship between a type or interface (the supplier) and a class that
implements it (the client). The client is required to support all of the operations declared by the supplier. The
implementation of a type or interface by a class is shown as a dashed line with a solid triangular arrowhead (a
dashed “generalization arrow”).

ISO 19141:2008(E)

40 © ISO 2008 – All rights reserved

Annex C
(informative)

Interpolating between orientations

C.1 Introduction

Given a pair of orientations of a moving feature at two distinct positions along a continuous path, as well as a
corresponding pair of times t0 and tf at which the moving feature is present at those positions, there arises the
problem of determining the feature’s orientation at some time ti which lies between t0 and tf. Such an
orientation can be calculated by interpolating between the two given orientations via a process known as
SLERP, or Spherical Linear intERPolation.

It is important to note that the angle between the feature orientations at t0 and tf must be acute. Interpolation
will follow, by definition, the shortest path between the orientations. If the angle between the orientations is
greater than 180 degrees then the interpolated orientation will be a mirror image of the desired result.

The following discussions will be illustrated according to the convention introduced in Figure C.1.

Figure C.1 — Default orientation

Rotations will be performed on the delta shape about the origin of the three main axes. Note the default
position, aligned along the X-axis with “up” aligned along the Z-axis, representing the object with no rotations
applied. For simplicity the object is exactly one unit in length, and its centre of rotation is the world origin. All
subsequent transformations will be applied relative to this “zero” position.

C.2 Euler rotations and gimbal lock

A common method for representing orientation is as a sequence of rotations about each major axis in turn –
sometimes called Euler angles. While intuitive to envision, there are some problems inherent in this method.
One problem is that the rotations aren’t commutative. For example, a rotation described according to the
sequence X-Y-Z is not the same as the same angles expressed as Y-Z-X [11] [12]. Another potentially serious
shortcoming of using Euler angles is the so-called gimbal-lock problem. For example, define an orientation

ISO 19141:2008(E)

© ISO 2008 – All rights reserved 41

using the sequence X-Y-Z (roll-pitch-yaw) where the angles are 45 degrees, −90 degrees, and −25 degrees,
respectively. The results of applying the first rotation can be seen in Figure C.2.

Figure C.2 — X-axis rotation

Now rotate the object −90 degrees about the Y-axis, as in Figure C.3.

Figure C.3 — Y-axis rotation

As you can see, there is now a problem: when the final rotation about the Z-axis is applied, the object will
actually be rotating about its local X-axis.

ISO 19141:2008(E)

42 © ISO 2008 – All rights reserved

Figure C.4 — Final Z-axis rotation

In essence, the object has lost a degree of freedom – it receives no yaw rotation. In fact, the unintended
additional roll actually conflicts with the original degree. One solution might seem to be to postpone the 90-
degree rotation (or any rotation that aligns the object with a conflicting major axis) until last but then, since
Euler angles aren’t commutative, the final result will be inconsistent with the intended order (which was
specified as X-Y-Z, or roll-pitch-yaw). Since future rotations could result in further instances of gimbal lock
about any of the axes, the rotation order would conceivably need to be modified repeatedly to compensate, in
each case coming into conflict with the requirement that all Euler rotations be applied in the same order.

A more effective solution to the gimbal-lock problem is to avoid using Euler rotations in favour of alternate
methods, which aren’t susceptible to this phenomenon.

C.3 Interpolating between two orientation matrices

The given pair of orientation matrices must first be converted to quaternion representation. (A detailed
examination of this necessity is beyond the scope of this document. For more information refer to [13].) Each
quaternion will take the form of a vector such that

, , ,Q X Y Z W=< > (1)

where X, Y and Z are coefficients defining an axis of rotation in an imaginary spherical space surrounding the
moving feature, and W is a scalar representation of the amount of rotation applied around that axis. At this
point it should be noted that the X, Y and Z components of a quaternion are not the same as the components
of a three-dimensional unit vector, nor is W a direct representation of a rotation in degrees.

In the ensuing discussion the elements within orientation matrices will be referenced according to the following
example:

[] [] [] []
[] [] [] []
[] [] [] []
[] [] [] []

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

mat mat mat mat

mat mat mat mat
M

mat mat mat mat

mat mat mat mat

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. (2)

ISO 19141:2008(E)

© ISO 2008 – All rights reserved 43

Calculate the trace T for each original orientation matrix as follows:

1 [0] [5]]10]T mat mat mat= + + + (3)

Test for T > (0 + ε) where ε represents the limit of a given system’s ability to approximate zero within rounding
errors (a useful practical value for ε might be 0.00000001). If T > (0 + ε) holds true, then the components of
the quaternion are calculated as follows:

[] []6 9

2

mat mat
X

T

−
= , (4)

[] []8 2

2

mat mat
Y

T

−
= , (5)

[] []1 4

2

mat mat
Z

T

−
= , (6)

2

T
W = . (7)

In the case where T = 0 (within the limits of the ability to approximate zero digitally), the algorithm for deriving
Q is more involved, but still straightforward. Presented in the C computing language, the procedure is as
follows:

if (mat[0] > mat[5] && mat[0] > mat[10])
 {//intermediate value S to simplify subsequent code

 S = sqrt(1.0 + mat[0] − mat[5] − mat[10]) * 2;
 X = 0.25 * S;
 Y = (mat[4] + mat[1]) / S;
 Z = (mat[2] + mat[8]) / S;

 W = (mat[6] − mat[9]) / S;
 }
else if (mat[5] > mat[10])
 {

 S = sqrt(1.0 + mat[5] − mat[0] − mat[10]) * 2;
 X = (mat[4] + mat[1]) / S;
 Y = 0.25 * S;
 Z = (mat[9] + mat[6]) / S;

 W = (mat[8] − mat[2]) / S;
 }
else
 {

 S = sqrt(1.0 + mat[10] − mat[0] − mat[5]) * 2;
 X = (mat[2] + mat[8]) / S;
 Y = (mat[9] + mat[6]) / S;
 Z = 0.25 * S;

 W = (mat[1] − mat[4]) / S;
 }

The process of interpolating an intermediate quaternion iQ , given the initial (0Q) and final (fQ) quaternions
defining the endpoints of a time interval t (on [0..1]), consists of two calculations. The value for θ , defined as
one-half the angle between 0Q and fQ , is found using dot product:

0arccos()fQ Qθ = • (8)

ISO 19141:2008(E)

44 © ISO 2008 – All rights reserved

where

0 0 0 0f f f o f fQ Q X X Y Y Z Z WW• = + + + (9)

For any desired time ti in the given interval the components of Qi may now be found according to the formula:

0 sin((1)) sin()i i f iQ Q t Q tθ θ= − + (10)

Recall that a quaternion takes the form of a vector , , ,Q X Y Z W=< > (see equation (1)). The final
interpolated orientation matrix is then derived as follows:

2 2

2 2

2 2

1 (2 2) 2 2 2 2 0

2 2 1 (2 2) 2 2 0

2 2 2 2 1 (2 2) 0

0 0 0 1

i

Y Z XY ZW XZ YW

XY ZW X Z YZ XW
M

XZ YW YZ XW X Y

⎡ ⎤− + + −
⎢ ⎥− − + +⎢ ⎥=
⎢ ⎥+ − − +
⎢ ⎥
⎣ ⎦

 (11)

C.4 Interpolating between other orientation representations

When interpolating between two orientations represented as Euler angles or as an axis and an angle, the
process is similar to that outlined above: convert the representations to quaternion form, perform the SLERP
operation, then convert the resultant quaternion back to the original form.

To convert Euler angles to quaternion form, define the angle around the X axis (roll) as ψ, the Y axis (pitch) as

θ, and the Z axis (yaw) as φ. The components of Q can then be calculated as follows [10]:

sin cos cos cos sin sin
2 2 2 2 2 2

X
ψ θ φ ψ θ φ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (12)

cos sin cos sin cos sin
2 2 2 2 2 2

Y
ψ θ φ ψ θ φ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (13)

cos cos sin sin sin cos
2 2 2 2 2 2

Z
ψ θ φ ψ θ φ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (14)

cos cos cos sin sin sin
2 2 2 2 2 2

W
ψ θ φ ψ θ φ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (15)

Converting the interpolated quaternion-form rotation back to Euler angles is based on the tight coupling
between Euler angles and their corresponding orientation matrix forms, and is “very ill-defined” [13]. Because
this conversion introduces numerous potential divide-by-zero situations where yaw and roll become
indistinguishable (see gimbal lock discussion above), it is strongly advised to avoid Euler angles entirely and
to resort to other rotation methods, such as matrix or axis-angle form.

The process to convert angle-axis representation to quaternion (and back) is quite straightforward. Given a
unit axis whose components are defined as

x y zA A A (16)

ISO 19141:2008(E)

© ISO 2008 – All rights reserved 45

and a rotation θ about that axis, the components of the corresponding quaternion Q are calculated as follows:

sin
2x

X A
θ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (17)

sin
2y

Y A
θ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (18)

sin
2z

Z A
θ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (19)

cos
2

W
θ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (20)

The axis-angle representation of a quaternion Q is calculated by reversing the above process (with a small
substitution to eliminate three inverse trigonometric operations):

2arccos()Wθ = (21)

2
1

x

X
A

W
=

−
 (22)

2
1

y

Y
A

W
=

−
 (23)

2
1

z

Z
A

W
=

−
. (24)

C.5 Sample interpolation

To illustrate the process of interpolating an intermediate orientation, assume an initial orientation in the default
position (no rotation, as per Figure C.1, above) and a final orientation (in Euler angles for ease of
visualization) of −45, −45 and 90 degrees in the X, Y and Z axes, respectively. Both orientations are shown in
Figure C.5.

ISO 19141:2008(E)

46 © ISO 2008 – All rights reserved

Figure C.5 — Initial and final rotations

The final orientation is:

0 0.707107 0.707107 0

-0.707107 0.5 -0.5 0

-0.707107 -0.5 0.5 0

0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (25)

Alternatively, to help in visualizing the orientation, the axis-angle representation is depicted in Figure C.6.

Figure C.6 — Axis-angle representation

The exercise is to interpolate an intermediate orientation for the object, depicting its orientation at a point
halfway between the given ones – in other words, when t is 0.5.

ISO 19141:2008(E)

© ISO 2008 – All rights reserved 47

Converting the initial orientation to quaternion form is trivial. Since the orientation is, in fact, zero, the result is
simply the unit quaternion:

0 0 0 0 1Q = (26)

Calculating the matrix trace T for the second orientation yields:

T = 0 + 0.5 + 0.5 + 1 = 2 (27)

Since 2 is easily greater than any reasonable approximation of zero, the components of Qf are calculated as

follows:

[] []6 9 0.5 (0.5)
0

2 2 2

mat mat
X

T

− − − −
= = = (28)

[] []8 2 0.707107 0.707107
0.5

2 2 2

mat mat
Y

T

− − −
= = = − , (29)

[] []1 4 0.707107 (0.707107)
0.5

2 2 2

mat mat
Z

T

− − −
= = = , (30)

2
0.707107

2 2

T
W = = = . (31)

Calculating the values needed for the SLERP equation yields:

0
� 0.707107

fQ Q = (32)

arcsin(0.707107) 4 45θ π= = = o
 (33)

 sin ((1-0.5)*45) sin(0.5*45)
0.

sin(45)

0x fx

ix

Q Q
Q

+
= =

o o

o
 (34)

Calculating the remaining components of Qi in similar fashion, the final interpolated quaternion is:

0 -0.2706 0.2706 0.9239iQ = . (35)

Converted to matrix form, the interpolated orientation matrix is:

0.707107 0.5 0.5 0

0.5 0.853553 0.14645 0

0.5 0.14645 0.853553 0

0 0 0 1

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥− −
⎢ ⎥
⎣ ⎦

 (36)

ISO 19141:2008(E)

48 © ISO 2008 – All rights reserved

And, unsurprisingly, the axis-angle form is simply a 45-degree rotation about the same axis as that of the final
rotation (Figure C.7).

Figure C.7 — Interpolated rotation

It’s important at this point to note that, while it may seem reasonable simply to use axis-angle representation
and multiply the rotation angle by t to get an intermediate rotation, that method is only practical when the initial
rotations are zero. Performing linear interpolation between two arbitrary axes of rotation can yield an
intermediate axis that is not of unit length, which must them be normalized. In addition, should the axis pass
through the origin, a given application must then deal with rotation about an intermediate axis of zero length.
No such problems arise when applying the SLERP process, which in most cases is also computationally
slightly more efficient than the alternatives.

ISO 19141:2008(E)

© ISO 2008 – All rights reserved 49

Bibliography

[1] ISO 19101:2002, Geographic information — Reference model

[2] ISO 19110:2004, Geographic information — Methodology for feature cataloguing

[3] ISO 19111:2003, Geographic information — Spatial referencing by coordinates

[4] ISO 19123:2005, Geographic information — Schema for coverage geometry and functions

[5] ISO/IEC 19501:2005, Information technology — Open Distributed Processing — Unified Modeling
Language (UML) Version 1.4.2

[6] C. S. JENSEN, et al. A consensus glossary of temporal data base concepts, ACM SIGMOD Records
1994, Vol. 23 Also available as consGlos.ps from ftp://ftp.cs.arizona.edu/tsql/doc/

[7] Object Management Group, OMG Unified Modeling Language Specification, version 1.3 1999,
Available from World Wide Web at http://www.omg.org/cgi-bin/doc?ad/99-06-08

[8] LUCA FORLIZZI et al., A data model and data structures for moving object databases. Proceedings of
the 2000 ACM SIGMOD international conference on Management of data, pp. 319 – 330, Available
from the World Wide Web at http://portal.acm.org/citation.cfm?id=335426&dl=ACM&coll=portal

[9] OURI WOLFSON et al., Moving objects databases: issues and solutions. Proceedings of the 10th
International Conference on Scientific and Statistical Database Management, 1998, pp. 111-122

[10] MARTIN ERWIG et al., A foundation for representing and querying moving objects. ACM Transactions
on Database Systems March 2000, pp. 1-42

[11] BOURG, DAVID, M., Physics for Game Developers, O’Reilly & Associates, 2002

[12] HEARN, DONALD and BAKER, M. PAULINE, Computer Graphics, Prentiss Hall, 1997

[13] SAVCHENKO, SERGEI, 3D Graphics Programming, Sams Publishing, 2000

[14] SHOEMAKE, KEN, Animating Rotations with Quaternion Curves, ACM SIGGRAPH 1985, Volume 19
Number 3, pp. 245-254

ISO 19141:2008(E)

ICS 35.240.70

Price based on 49 pages

© ISO 2008 – All rights reserved

© STANDARDS MALAYSIA 2009 - All rights reserved

Acknowledgements

Members of Technical Committee on Geographic Information/Geomatics

Name Organisation

Prof Dato' Dr Abdul Kadir Taib (Chairman) Department of Survey and Mapping
Malaysia

Ms Siti Mariam Rahmat (Secretary) SIRIM Berhad

Mr Syed Fadzil Syed Shahabudin Department of Agriculture, Malaysia

Mr Hasan Jamil/Mr Mohamad Kamali Adimin Department of Survey and Mapping
Malaysia

Mr Daniel Boey ESRI South Asia Sdn Bhd

Dr Noordin Ahmad GeoInfo Services Sdn Bhd

Dr Safry Kamal Haji Ahmad Jabatan Kerja Raya Malaysia

Ms Nor Sallehi Kassim Jabatan Perancangan Bandar dan Desa

Dr Muhamad Radzali Mispan Malaysian Agricultural Research and
Development Institute

Ms Fuziah Haji Abu Hanifah Pusat Infrastuktur Data Geospatial Negara

Mr Mansor Abd. Rahaman Pusat Remote Sensing Malaysia

Ms Nisfariza Mohd Noor Universiti Malaya

Assoc Prof Dr Wan Muhammad Aminuddin Wan

Hussin/Prof Dr Ruslan Rainis

Universiti Sains Malaysia

Mr Mohamad Ghazali Hashim Universiti Teknologi Malaysia

Assoc Prof Dr Khoiri Mohd Dimyati Universiti Teknologi MARA

© Copyright 2009
All rights reserved. No part of this publication may be reproduced or utilised in any
form or by any means, electronic or mechanical, including photocopying and
microfilm, without permission in writing from the Department of Standards Malaysia.

