

MS ISO/IEC 13818-7:2009
(CONFIRMED:2015)

MALAYSIAN
STANDARD

Information technology - Generic coding
of moving pictures and associated audio
information - Part 7: Advanced audio
coding (AAC)
(ISO/IEC 13818-7:2006, AMD. 1:2007, IDT)

ISO/IEC 13818-7:2006, Amendment 1:2007 is endorsed as
Malaysian Standard with the reference number MS ISO/IEC 13818-
7:2009.

ICS: 35.040

Descriptors: computer graphics, character sets and information coding

© Copyright 2009

DEPARTMENT OF STANDARDS MALAYSIA

NOTE. This Malaysian Standard has been reviewed and confirmed as being current.

DEVELOPMENT OF MALAYSIAN STANDARDS

The Department of Standards Malaysia (STANDARDS MALAYSIA) is the national
standards and accreditation body of Malaysia.

The main function of STANDARDS MALAYSIA is to foster and promote standards,
standardisation and accreditation as a means of advancing the national economy, promoting
industrial efficiency and development, benefiting the health and safety of the public,
protecting the consumers, facilitating domestic and international trade and furthering
international cooperation in relation to standards and standardisation.

Malaysian Standards (MS) are developed through consensus by committees which comprise
balanced representation of producers, users, consumers and others with relevant interests,
as may be appropriate to the subject at hand. To the greatest extent possible, Malaysian
Standards are aligned to or are adoption of international standards. Approval of a standard
as a Malaysian Standard is governed by the Standards of Malaysia Act 1996 [Act 549].
Malaysian Standards are reviewed periodically. The use of Malaysian Standards is voluntary
except in so far as they are made mandatory by regulatory authorities by means of
regulations, local by-laws or any other similar ways.

For the purposes of Malaysian Standards, the following definitions apply:

Revision: A process where existing Malaysian Standard is reviewed and updated which
resulted in the publication of a new edition of the Malaysian Standard.

Confirmed MS: A Malaysian Standard that has been reviewed by the responsible
committee and confirmed that its contents are current.

Amendment: A process where a provision(s) of existing Malaysian Standard is altered. The
changes are indicated in an amendment page which is incorporated into the existing
Malaysian Standard. Amendments can be of technical and/or editorial nature.

Technical corrigendum: A corrected reprint of the current edition which is issued to correct
either a technical error or ambiguity in a Malaysian Standard inadvertently introduced either
in drafting or in printing and which could lead to incorrect or unsafe application of the
publication.

NOTE: Technical corrigenda are not to correct errors which can be assumed to have no consequences in the application
of the MS, for example minor printing errors.

STANDARDS MALAYSIA has appointed SIRIM Berhad as the agent to develop, distribute
and sell Malaysian Standards.

For further information on Malaysian Standards, please contact:

Department of Standards Malaysia OR SIRIM Berhad
Ministry of Science, Technology and Innovation (Company No. 367474 - V)
Level 1 & 2, Block 2300, Century Square 1, Persiaran Dato’ Menteri
Jalan Usahawan Section 2, P. O. Box 7035
63000 Cyberjaya 40700 Shah Alam
Selangor Darul Ehsan Selangor Darul Ehsan
MALAYSIA MALAYSIA

Tel: 60 3 8318 0002 Tel: 60 3 5544 6000
Fax: 60 3 8319 3131 Fax: 60 3 5510 8095
http://www.jsm.gov.my http://www.sirim.my
E-mail: central@jsm.gov.my E-mail: msonline@sirim.my

MS ISO/IEC 13818-7:2009

© STANDARDS MALAYSIA 2009 - All rights reserved i

Committee representation

The Industry Standards Committee on Information Technology, Telecommunication and Multimedia (ISC G) under
whose authority this Malaysian Standard was adopted, comprises representatives from the following organisations:

Association of Consulting Engineers Malaysia
Department of Standards Malaysia
Federation of Malaysian Manufacturers
Malaysian Administrative, Modernisation and Management Planning Unit
Malaysian Communications and Multimedia Commission
Malaysian International Chamber of Commerce and Industry
Malaysian National Computer Confederation
Malaysian Technical Standards Forum Berhad
MIMOS Berhad
Ministry of Domestic Trade and Consumer Affairs
Ministry of Energy, Water and Communications Malaysia
Ministry of International Trade and Industry
Ministry of Science, Technology and Innovation
Multimedia Development Corporation Sdn Bhd
Multimedia University
National Institute of Public Administration
Persatuan Industri Komputer dan Multimedia Malaysia
Science and Technology Research Institute for Defence
SIRIM Berhad (Secretariat)
Telekom Malaysia Berhad
The Institution of Engineers, Malaysia
Universiti Teknologi Malaysia

The Technical Committee on Computer Graphics and Multimedia which recommended the adoption of the ISO/IEC
Standard consists of representatives from the following organisations:

Celcom Berhad
Multimedia Development Corporation Sdn Bhd
Persatuan Industri Komputer dan Multimedia Malaysia
Radio Televisyen Malaysia
SIRIM Berhad (Secretariat)
Universiti Putra Malaysia
Universiti Teknikal Malaysia
Universiti Teknologi Malaysia
Universiti Teknologi MARA

MS ISO/IEC 13818-7:2009

ii © STANDARDS MALAYSIA 2009 - All rights reserved

NATIONAL FOREWORD

The adoption of the ISO/IEC Standard as a Malaysian Standard was recommended by the
Technical Committee on Computer Graphics and Multimedia under the authority of the
Industry Standards Committee on Information Technology, Telecommunication and
Multimedia.

This Malaysian Standard is identical with ISO/IEC 13818-7:2006, Information technology -
Generic coding of moving pictures and associated audio information - Part 7: Advanced Audio
Coding (AAC), including its Amendment 1:2007, published by the International Organization
for Standardization (ISO) and International Electrotechnical Commission (IEC). However, for
the purposes of this Malaysian Standard, the following apply:

a) in the source text, "this International Standard" should read "this Malaysian Standard";

b) the comma which is used as a decimal sign (if any), to read as a point; and

c) reference to International Standards should be replaced by equivalent Malaysian
Standards as follows:

Referenced International Standards Corresponding Malaysian Standards

ISO/IEC 11172-3, Information technology -
Coding of moving pictures and associated
audio for digital storage media at up to about
1,5 Mbit/s - Part 3: Audio

 MS ISO/IEC 11172-3, Information
technology - Coding of moving pictures and
associated audio for digital storage media at
up to about 1,5 Mbit/s - Part 3: Audio

ISO/IEC 13818-1, Information technology -
Generic coding of moving pictures and
associated audio information - Part 1:
Systems

 MS ISO/IEC 13818-1, Information
technology - Generic coding of moving
pictures and associated audio information:
Systems

ISO/IEC 13818-3, Information technology -
Generic coding of moving pictures and
associated audio information - Part 3: Audio

 MS ISO/IEC 13818-3, Information
technology - Generic coding of moving
pictures and associated audio information -
Part 3: Audio

MS ISO/IEC 13818 consists of the following parts, under the general title Information
technology - Generic coding of moving pictures and associated audio information:

Part 1: Systems

Part 2: Video

Part 3: Audio

Part 4: Conformance testing

Part 5: Software simulation [Technical report]

Part 6: Extensions for DSM-CC

MS ISO/IEC 13818-7:2009

© STANDARDS MALAYSIA 2009 - All rights reserved iii

NATIONAL FOREWORD (continued)

Part 7: Advanced Audio Coding (AAC)

Part 9: Extension for real time interface for systems decoders

Part 10: Conformance extensions for Digital Storage Media Command and Control (DSM-CC)

Part 11: IPMP on MPEG-2 systems

Compliance with a Malaysian Standard does not of itself confer immunity from legal
obligations.

NOTE. IDT on the front cover indicates an identical standard i.e. a standard where the technical content, structure,
and wording (or is an identical translation) of a Malaysian Standard is exactly the same as in an International
Standard or is identical in technical content and structure although it may contain the minimal editorial changes
specified in clause 4.2 of ISO/IEC Guide 21-1.

Reference number
ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006

INTERNATIONAL
STANDARD

ISO/IEC
13818-7

Fourth edition
2006-01-15

Information technology — Generic coding
of moving pictures and associated audio
information —

Part 7:
Advanced Audio Coding (AAC)

Technologies de l'information — Codage générique des images
animées et du son associé —

Partie 7: Codage du son avancé (AAC)

ISO/IEC 13818-7:2006(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but

shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In

downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat

accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation

parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© ISO/IEC 2006

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,

electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or

ISO's member body in the country of the requester.

ISO copyright office

Case postale 56 • CH-1211 Geneva 20

Tel. + 41 22 749 01 11

Fax + 41 22 749 09 47

E-mail copyright@iso.org

Web www.iso.org

Published in Switzerland

ii © ISO/IEC 2006 – All rights reserved

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved iii

Contents Page

Foreword..v

Introduction ..vi

1 Scope ..1
1.1 General..1
1.2 MPEG-2 AAC Tools Overview...1

2 Normative References...7

3 Terms and Definitions ...7

4 Symbols and Abbreviations ...14
4.1 Arithmetic Operators...14
4.2 Logical Operators ..15
4.3 Relational Operators ...15
4.4 Bitwise Operators ..16
4.5 Assignment ..16
4.6 Mnemonics ...16
4.7 Constants ...16

5 Method of Describing Bitstream Syntax ...16

6 Syntax ...18
6.1 Audio Data Interchange Format, ADIF...18
6.2 Audio Data Transport Stream, ADTS...19
6.3 Raw Data...21

7 Profiles and Profile Interoperability ...33
7.1 Profiles..33
7.2 Profile Interoperability...35

8 Overall Data Structure...36
8.1 AAC Interchange Formats ..36
8.2 Raw Data...41
8.3 Single Channel Element (SCE), Channel Pair Element (CPE) and Individual Channel

Stream (ICS) ...45
8.4 Low Frequency Enhancement Channel (LFE) ..51
8.5 Program Config Element (PCE)..51
8.6 Data Stream Element (DSE) ..56
8.7 Fill Element (FIL) ..56
8.8 Extension Payload...57
8.9 Tables..61
8.10 Figures ..70

9 Noiseless Coding...70
9.1 Tool Description...70
9.2 Definitions ..71
9.3 Decoding Process..73
9.4 Tables..76

10 Quantization ...76
10.1 Tool Description...76
10.2 Definitions ..76
10.3 Decoding Process..76

11 Scalefactors..77
11.1 Tool Description...77

ISO/IEC 13818-7:2006(E)

iv © ISO/IEC 2006 – All rights reserved

11.2 Definitions.. 77
11.3 Decoding Process... 78

12 Joint Coding .. 79
12.1 M/S Stereo.. 79
12.2 Intensity Stereo ... 80
12.3 Coupling Channel ... 82

13 Prediction... 86
13.1 Tool Description.. 86
13.2 Definitions.. 86
13.3 Decoding Process... 87
13.4 Diagrams.. 93

14 Temporal Noise Shaping (TNS) ... 93
14.1 Tool Description.. 93
14.2 Definitions.. 94
14.3 Decoding Process... 94

15 Filterbank and Block Switching... 96
15.1 Tool Description.. 96
15.2 Definitions.. 96
15.3 Decoding Process... 97

16 Gain Control... 101
16.1 Tool Description.. 101
16.2 Definitions.. 102
16.3 Decoding Process... 102
16.4 Diagrams.. 109
16.5 Tables ... 109

Annex A (normative) Huffman Codebook Tables.. 111

Annex B (informative) Information on Unused Codebooks .. 130

Annex C (informative) Encoder ... 131

Annex D (informative) Patent Holders .. 189

Annex E (informative) Registration Procedure.. 190

Annex F (informative) Registration Application Form .. 192

Annex G (informative) Registration Authority ... 193

Bibliography ... 194

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved v

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees
established by the respective organization to deal with particular fields of technical activity. ISO and IEC
technical committees collaborate in fields of mutual interest. Other international organizations, governmental
and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information
technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International
Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as
an International Standard requires approval by at least 75 % of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

ISO/IEC 13818-7 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology,
Subcommittee SC 29, Coding of audio, picture, multimedia and hypermedia information.

This fourth edition cancels and replaces the third edition (ISO 13818-7:2004), which has been technically
revised. It also incorporates the Technical Corrigendum ISO/IEC 13818-7:2004/Cor.1:2005.

ISO/IEC 13818 consists of the following parts, under the general title Information technology — Generic
coding of moving pictures and associated audio information:

— Part 1: Systems

— Part 2: Video

— Part 3: Audio

— Part 4: Conformance testing

— Part 5: Software simulation [Technical Report]

— Part 6: Extensions for DSM-CC

— Part 7: Advanced Audio Coding (AAC)

— Part 9: Extension for real time interface for systems decoders

— Part 10: Conformance extensions for Digital Storage Media Command and Control (DSM-CC)

— Part 11: IPMP on MPEG-2 systems

ISO/IEC 13818-7:2006(E)

vi © ISO/IEC 2006 – All rights reserved

Introduction

The standardization body ISO/IEC JTC 1/SC 29/WG 11, also known as the Moving Pictures Experts Group
(MPEG), was established in 1988 to specify digital video and audio coding schemes at low data rates. MPEG
completed its first phase of audio specifications (MPEG-1) in November 1992, ISO/IEC 11172-3. In its second
phase of development, the MPEG Audio subgroup defined a multichannel extension to MPEG-1 audio that is
backwards compatible with existing MPEG-1 systems (MPEG-2 BC) and defined an audio coding standard at
lower sampling frequencies than MPEG-1, ISO/IEC 13818-3.

The International Organization for Standardization (ISO) and International Electrotechnical Commission (IEC)
draw attention to the fact that it is claimed that compliance with this document may involve the use of patents.

The ISO and IEC take no position concerning the evidence, validity and scope of this patent right.

The holder of this patent right has assured the ISO and IEC that he is willing to negotiate licences under
reasonable and non-discriminatory terms and conditions with applicants throughout the world. In this respect,
the statement of the holder of this patent right is registered with the ISO and IEC. Information may be obtained
from the companies listed in Annex D.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights other than those identified in Annex D. ISO and IEC shall not be held responsible for identifying any or
all such patent rights.

INTERNATIONAL STANDARD ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 1

Information technology — Generic coding of moving pictures
and associated audio information —

Part 7:
Advanced Audio Coding (AAC)

1 Scope

1.1 General

This International Standard describes the MPEG-2 audio non-backwards compatible standard called MPEG-2
Advanced Audio Coding, AAC [1], a higher quality multichannel standard than achievable while requiring
MPEG-1 backwards compatibility. This MPEG-2 AAC audio standard allows for ITU-R “indistinguishable”
quality according to [2] at data rates of 320 kbit/s for five full-bandwidth channel audio signals.

The AAC decoding process makes use of a number of required tools and a number of optional tools. Table 1
lists the tools and their status as required or optional. Required tools are mandatory in any possible profile.
Optional tools may not be required in some profiles.

Table 1 — AAC decoder tools

Tool Name Required / Optional

Bitstream Formatter Required

Noiseless Decoding Required

Inverse quantization Required

Rescaling Required

M/S Optional

Prediction Optional

Intensity Optional

Dependently switched coupling Optional

TNS Optional

Filterbank / block switching Required

Gain control Optional

Independently switched coupling Optional

1.2 MPEG-2 AAC Tools Overview

The basic structure of the MPEG-2 AAC system is shown in Figure 1 and Figure 2. As is shown in Table 1,
there are both required and optional tools in the decoder. The data flow in this diagram is from left to right, top
to bottom. The functions of the decoder are to find the description of the quantized audio spectra in the
bitstream, decode the quantized values and other reconstruction information, reconstruct the quantized
spectra, process the reconstructed spectra through whatever tools are active in the bitstream in order to arrive
at the actual signal spectra as described by the input bitstream, and finally convert the frequency domain
spectra to the time domain, with or without an optional gain control tool. Following the initial reconstruction and
scaling of the spectrum reconstruction, there are many optional tools that modify one or more of the spectra in
order to provide more efficient coding. For each of the optional tools that operate in the spectral domain, the
option to “pass through” is retained, and in all cases where a spectral operation is omitted, the spectra at its
input are passed directly through the tool without modification.

ISO/IEC 13818-7:2006(E)

2 © ISO/IEC 2006 – All rights reserved

The input to the bitstream demultiplexer tool is the MPEG-2 AAC bitstream. The demultiplexer separates the
parts of the MPEG-AAC data stream into the parts for each tool, and provides each of the tools with the
bitstream information related to that tool.

The outputs from the bitstream demultiplexer tool are:

• The sectioning information for the noiselessly coded spectra,

• The noiselessly coded spectra,

• The M/S decision information (optional),

• The predictor state information (optional),

• The intensity stereo control information and coupling channel control information (both optional),

• The temporal noise shaping (TNS) information (optional),

• The filterbank control information, and

• The gain control information (optional).

The noiseless decoding tool takes information from the bitstream demultiplexer, parses that information,
decodes the Huffman coded data, and reconstructs the quantized spectra and the Huffman and DPCM coded
scalefactors.

The inputs to the noiseless decoding tool are:

• The sectioning information for the noiselessly coded spectra, and

• The noiselessly coded spectra.

The outputs of the Noiseless Decoding tool are:

• The decoded integer representation of the scalefactors, and

• The quantized values for the spectra.

The inverse quantizer tool takes the quantized values for the spectra, and converts the integer values to the
non-scaled, reconstructed spectra. This quantizer is a non-uniform quantizer.

The input to the Inverse Quantizer tool is:

• The quantized values for the spectra.

The output of the inverse quantizer tool is:

• The un-scaled, inversely quantized spectra.

The rescaling tool converts the integer representation of the scalefactors to the actual values, and multiplies
the un-scaled inversely quantized spectra by the relevant scalefactors.

The inputs to the rescaling tool are:

• The decoded integer representation of the scalefactors, and

• The un-scaled, inversely quantized spectra.

The output from the scalefactors tool is:

• The scaled, inversely quantized spectra.

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 3

The M/S tool converts spectra pairs from Mid/Side to Left/Right under control of the M/S decision information
in order to improve coding efficiency.

The inputs to the M/S tool are:

• The M/S decision information, and

• The scaled, inversely quantized spectra related to pairs of channels.

The output from the M/S tool is:

• The scaled, inversely quantized spectra related to pairs of channels, after M/S decoding.

Note The scaled, inversely quantized spectra of individually coded channels are not processed by the M/S block, rather
they are passed directly through the block without modification. If the M/S block is not active, all spectra are passed
through this block unmodified.

The prediction tool reverses the prediction process carried out at the encoder. This prediction process re-
inserts the redundancy that was extracted by the prediction tool at the encoder, under the control of the
predictor state information. This tool is implemented as a second order backward adaptive predictor. The
inputs to the prediction tool are:

• The predictor state information, and

• The scaled, inversely quantized spectra.

The output from the prediction tool is:

• The scaled, inversely quantized spectra, after prediction is applied.

Note If the prediction is disabled, the scaled, inversely quantized spectra are passed directly through the block without
modification.

The intensity stereo tool implements intensity stereo decoding on pairs of spectra.

The inputs to the intensity stereo tool are:

• The inversely quantized spectra, and

• The intensity stereo control information.

The output from the intensity stereo tool is:

• The inversely quantized spectra after intensity channel decoding.

Note The scaled, inversely quantized spectra of individually coded channels are passed directly through this tool without
modification, if intensity stereo is not indicated. The intensity stereo tool and M/S tool are arranged so that the operation of
M/S and intensity stereo are mutually exclusive on any given scalefactor band and group of one pair of spectra.

The coupling tool for dependently switched coupling channels adds the relevant data from dependently
switched coupling channels to the spectra, as directed by the coupling control information.

The inputs to the coupling tool are:

• The inversely quantized spectra, and

• The coupling control information.

The output from the coupling tool is:

• The inversely quantized spectra coupled with the dependently switched coupling channels.

ISO/IEC 13818-7:2006(E)

4 © ISO/IEC 2006 – All rights reserved

Note The scaled, inversely quantized spectra are passed directly through this tool without modification, if coupling is not
indicated. Depending on the coupling control information, dependently switched coupling channels might either be coupled
before or after the TNS processing.

The coupling tool for independently switched coupling channels adds the relevant data from independently
switched coupling channels to the time signal, as directed by the coupling control information.

The inputs to the coupling tool are:

• The time signal as output by the filterbank, and

• The coupling control information.

The output from the coupling tool is:

• The time signal coupled with the independently switched coupling channels.

Note The time signal is passed directly through this tool without modification, if coupling is not indicated.

The temporal noise shaping (TNS) tool implements a control of the fine time structure of the coding noise. In
the encoder, the TNS process has flattened the temporal envelope of the signal to which it has been applied.
In the decoder, the inverse process is used to restore the actual temporal envelope(s), under control of the
TNS information. This is done by applying a filtering process to parts of the spectral data.

The inputs to the TNS tool are:

• The inversely quantized spectra, and

• The TNS information.

The output from the TNS block is:

• The inversely quantized spectra.

Note If this block is disabled, the inversely quantized spectra are passed through without modification.

The filterbank / block switching tool applies the inverse of the frequency mapping that was carried out in the
encoder. An inverse modified discrete cosine transform (IMDCT) is used for the filterbank tool. The IMDCT
can be configured to support either one set of 128 or 1024, or four sets of 32 or 256 spectral coefficients.

The inputs to the filterbank tool are:

• The inversely quantized spectra, and

• The filterbank control information.

The output(s) from the filterbank tool is (are):

• The time domain reconstructed audio signal(s).

When present, the gain control tool applies a separate time domain gain control to each of four frequency
bands that have been created by the gain control PQF filterbank in the encoder. Then, it assembles four
frequency bands and reconstructs the time waveform through the gain control tool’s filterbank.

The inputs to the gain control tool are:

• The time domain reconstructed audio signal(s), and

• The gain control information.

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 5

The output(s) from the gain control tool is (are):

• The time domain reconstructed audio signal(s).

If the gain control tool is not active, the time domain reconstructed audio signal(s) are passed directly from the
filterbank tool to the output of the decoder. This tool is used for the scalable sampling rate (SSR) profile only.

 input time signal

quantization
and noiseless

coding

AAC
gain control

window length
decision

TNS

intensity

prediction

M/S

threshold
calculation

quantization

bitstream
formatter

coded
audio

stream

Legend:
data
control

psychoacoustic
model

block
switching

 filterbank

Huffman coding

scaling

spectral
processing

Figure 1 — MPEG-2 AAC Encoder Block Diagram

ISO/IEC 13818-7:2006(E)

6 © ISO/IEC 2006 – All rights reserved

spectral
processing

AAC
gain control

block
switching

filterbank

TNS

intensity

prediction

M/S

bitstream
deformatter

coded
audio
stream

output
time
signal

noiseless
decoding and
inverse
quantization

Legend:
data
control

dependently
switched
coupling

independently
switched
coupling

dependently
switched
coupling

inverse
quantization

Huffman decoding

rescaling

Figure 2 — MPEG-2 AAC Decoder Block Diagram

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 7

2 Normative References

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

ISO/IEC 11172-3: Information technology — Coding of moving pictures and associated audio for digital
storage media at up to about 1,5 Mbit/s — Part 3: Audio

ISO/IEC 13818-1: Information technology — Generic coding of moving pictures and associated audio
information — Part 1: Systems

ISO/IEC 13818-3: Information technology — Generic coding of moving pictures and associated audio
information — Part 3: Audio

ISO/IEC 14496-3: Information technology — Coding of audio-visual objects — Part 3: Audio

3 Terms and Definitions

For the purposes of this part of ISO/IEC 13818, the following definitions apply.

3.1
access unit
in the case of compressed audio, an audio access unit

3.2
alias
mirrored signal component resulting from sampling

3.3
analysis filterbank
filterbank in the encoder that transforms a broadband PCM audio signal into a set of spectral coefficients

3.4
ancillary data
part of the bitstream that might be used for transmission of ancillary data

3.5
audio access unit
for AAC, the smallest part of the encoded bitstream which can be decoded by itself, where decoded means
"fully reconstructed sound"

NOTE Typically, this is a segment of the encoded bitstream starting after the end of the byte containing the last bit of
one ID_END id_syn_ele() through the end of the byte containing the last bit of the next ID_END id_syn_ele.

3.6
audio buffer
buffer in the system target decoder (see ISO/IEC 13818-1) for storage of compressed audio data

3.7
bark
standard unit corresponding to one critical band width of human hearing

3.8
backward compatibility
newer coding standard is backward compatible with an older coding standard if decoders designed to operate
with the older coding standard are able to continue to operate by decoding all or part of a bitstream produced
according to the newer coding standard

ISO/IEC 13818-7:2006(E)

8 © ISO/IEC 2006 – All rights reserved

3.9
bitrate
rate at which the compressed bitstream is delivered to the input of a decoder

3.10
bitstream
stream
ordered series of bits that forms the coded representation of the data

3.11
bitstream verifier
process by which it is possible to test and verify that all the requirements specified in this part of
ISO/IEC 13818 are met by the bitstream

3.12
block companding
normalizing of the digital representation of an audio signal within a certain time period

3.13
byte aligned
bit in a coded bitstream is byte-aligned if its position is a multiple of 8-bits from either the first bit in the stream
for the Audio Data Interchange Format (see 6.1) or the first bit in the syncword for the Audio Data Transport
Stream Format (see 6.2)

3.14
byte
sequence of 8 bits

3.15
centre channel
audio presentation channel used to stabilize the central component of the frontal stereo image

3.16
channel
sequence of data representing an audio signal intended to be reproduced at one listening position

3.17
coded audio bitstream
coded representation of an audio signal

3.18
coded representation
data element as represented in its encoded form

3.19
compression
reduction in the number of bits used to represent an item of data

3.20
constant bitrate
operation in which the bitrate is constant from start to finish of the coded bitstream

3.21
CRC
Cyclic Redundancy Check to verify the correctness of data

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 9

3.22
critical band
unit of bandwidth which represents the standard unit of bandwidth expressed in human auditory terms,
corresponding to a fixed length on the human cochlea, approximately equal to 100 Hz at low frequencies and
1/3 octave at higher frequencies, above approximately 700 Hz

3.23
data element
item of data as represented before encoding and after decoding

3.24
decoded stream
decoded reconstruction of a compressed bitstream

3.25
decoder
embodiment of a decoding process

3.26
decoding (process)
process defined in this part of ISO/IEC 13818 that reads an input coded bitstream and outputs decoded audio
samples

3.27
digital storage media
DSM
digital storage or transmission device or system

3.28
discrete cosine transform
DCT
either the forward discrete cosine transform or the inverse discrete cosine transform, an invertible, discrete
orthogonal transformation

3.29
downmix
matrixing of n channels to obtain less than n channels

3.30
editing
process by which one or more coded bitstreams are manipulated to produce a new coded bitstream

NOTE Conforming edited bitstreams are defined in this part of ISO/IEC 13818.

3.31
encoder
embodiment of an encoding process

3.32
encoding (process)
process, not specified in ISO/IEC 13818, that reads a stream of input audio samples and produces a valid
coded bitstream as defined in this part of ISO/IEC 13818

3.33
entropy coding
variable length lossless coding of the digital representation of a signal to reduce statistical redundancy

ISO/IEC 13818-7:2006(E)

10 © ISO/IEC 2006 – All rights reserved

3.34
Fast Fourier Transformation
FFT
fast algorithm for performing a discrete Fourier transform (an orthogonal transform)

3.35
filterbank
set of band-pass filters covering the entire audio frequency range

3.36
flag
variable which can take one of only the two values defined in this part of ISO/IEC 13818

3.37
forward compatibility
a newer coding standard is forward compatible with an older coding standard if decoders designed to operate
with the newer coding standard are able to decode bitstreams of the older coding standard

3.38
frame
part of the audio signal that corresponds to audio PCM samples from an audio access unit

3.39
Fs
sampling frequency

3.40
Hann window
time function applied sample-by-sample to a block of audio samples before Fourier transformation

3.41
Huffman coding
specific method for entropy coding

3.42
hybrid filterbank
serial combination of subband filterbank and MDCT

3.43
IDCT
Inverse Discrete Cosine Transform

3.44
IMDCT
Inverse Modified Discrete Cosine Transform

3.45
intensity stereo
method of exploiting stereo irrelevance or redundancy in stereophonic audio programmes based on retaining
at high frequencies only the energy envelope of the right and left channels

3.46
joint stereo coding
any method that exploits stereophonic irrelevance or stereophonic redundancy

3.47
joint stereo mode
mode of the audio coding algorithm using joint stereo coding

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 11

3.48
low frequency enhancement (LFE) channel
limited bandwidth channel for low frequency audio effects in a multichannel system

3.49
main audio channels
all channels represented by either single_channel_element()'s (see 8.2.1) or channel_pair_element()´s
(see 8.2.1)

3.50
mapping
conversion of an audio signal from time to frequency domain by subband filtering and/or by MDCT

3.51
masking
property of the human auditory system by which an audio signal cannot be perceived in the presence of
another audio signal

3.52
masking threshold
function in frequency and time below which an audio signal cannot be perceived by the human auditory
system

3.53
modified discrete cosine transform
MDCT
transform which has the property of time domain aliasing cancellation

NOTE An analytical espression for the MDCT can be found in C.3.1.2.

3.54
M/S stereo
method of removing imaging artefacts as well as exploiting stereo irrelevance or redundancy in stereophonic
audio programmes based on coding the sum and difference signal instead of the left and right channels

3.55
multichannel
combination of audio channels used to create a spatial sound field

3.56
multilingual
presentation of dialogue in more than one language

3.57
non-tonal component
noise-like component of an audio signal

3.58
Number of Considered Channels
NCC
number of channels represented by the elements SCE, independently switched CCE and CPE, i.e. once the
number of SCEs plus once the number of independently switched CCEs plus twice the number of CPEs, with
respect to the naming conventions of the MPEG-AAC decoders and bitstreams, NCC=A+I

NOTE This number is used to derive the required decoder input buffer size (see 8.2.3).

3.59
Nyquist sampling
sampling at or above twice the maximum bandwidth of a signal

ISO/IEC 13818-7:2006(E)

12 © ISO/IEC 2006 – All rights reserved

3.60
padding
method to adjust the average length of an audio frame in time to the duration of the corresponding PCM
samples, by conditionally adding a slot to the audio frame

3.61
parameter
variable within the syntax of this specification which may take one of a range of values. A variable which can
take one of only two values is a flag or indicator and not a parameter

3.62
parser
functional stage of a decoder which extracts from a coded bitstream a series of bits representing coded
elements

3.63
polyphase filterbank
set of equal bandwidth filters with special phase interrelationships, allowing for an efficient implementation of
the filterbank

3.64
prediction error
difference between the actual value of a sample or data element and its predictor

3.65
prediction
use of a predictor to provide an estimate of the sample value or data element currently being decoded

3.66
predictor
linear combination of previously decoded sample values or data elements

3.67
presentation channel
audio channel at the output of the decoder

3.68
presentation unit
in the case of compressed audio, a decoded audio access unit

3.69
program
set of main audio channels, coupling_channel_element()'s (see 8.2.1), lfe_channel_element()'s (see 8.2.1),
and associated data streams intended to be decoded and played back simultaneously

NOTE A program may be defined by default (see 8.5.3.1 and 8.5.3.3) or specifically by a program_config_element()
(see 8.5.3.2). A given single_channel_element() (see 8.2.1), channel_pair_element() (see 8.2.1),
coupling_channel_element(), lfe_channel_element() or data channel may accompany one or more programs in any given
bitstream.

3.70
psychoacoustic model
mathematical model of the masking behaviour of the human auditory system

3.71
random access
process of beginning to read and decode the coded bitstream at an arbitrary point

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 13

3.72
reserved
when used in the clauses defining the coded bitstream, indicates that the value may be used in the future for
ISO/IEC defined extensions

3.73
sampling frequency
Fs
rate in Hertz which is used to digitize an audio signal during the sampling process

3.74
scalefactor
factor by which a set of values is scaled before quantization

3.75
scalefactor band
set of spectral coefficients which are scaled by one scalefactor

3.76
scalefactor index
numerical code for a scalefactor

3.77
side information
information in the bitstream necessary for controlling the decoder

3.78
spectral coefficients
discrete frequency domain data output from the analysis filterbank

3.79
spreading function
function that describes the frequency spread of masking effects

3.80
stereo-irrelevant
portion of a stereophonic audio signal which does not contribute to spatial perception

3.81
stuffing (bits)
stuffing (bytes)
code words that may be inserted at particular locations in the coded bitstream that are discarded in the
decoding process whose purpose is to increase the bitrate of the stream which would otherwise be lower than
the desired bitrate

3.82
surround channel
audio presentation channel added to the front channels (L and R or L, R, and C) to enhance the spatial
perception

3.83
Syncword
a 12-bit code embedded in the audio bitstream that identifies the start of a adts_frame() (see 6.2, Table 5)

3.84
synthesis filterbank
filterbank in the decoder that reconstructs a PCM audio signal from subband samples

ISO/IEC 13818-7:2006(E)

14 © ISO/IEC 2006 – All rights reserved

3.85
tonal component
sinusoid-like component of an audio signal

3.86
variable bitrate
operation in which the bitrate varies with time during the decoding of a coded bitstream

3.87
variable length coding
reversible procedure for coding that assigns shorter code words to frequent symbols and longer code words to
less frequent symbols

3.88
variable length code
VLC
code word assigned by variable length encoder (see variable length coding)

3.89
variable length decoder
procedure to obtain the symbols encoded with a variable length coding technique

3.90
variable length encoder
procedure to assign variable length codewords to symbols

4 Symbols and Abbreviations

The mathematical operators used to describe this International Standard are similar to those used in the C
programming language. However, integer division with truncation and rounding are specifically defined. The
bitwise operators are defined assuming twos-complement representation of integers. Numbering and counting
loops generally begin from zero.

4.1 Arithmetic Operators

+ Addition.

− Subtraction (as a binary operator) or negation (as a unary operator).

++ Increment.

− − Decrement.

* Multiplication.

^ Power.

/ Integer division with truncation of the result toward zero. For example, 7/4 and −7/−4 are truncated

to 1 and −7/4 and 7/−4 are truncated to −1.

// Integer division with rounding to the nearest integer. Half-integer values are rounded away from zero

unless otherwise specified. For example 3//2 is rounded to 2, and −3//2 is rounded to −2.

DIV Integer division with truncation of the result towards −∞.

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 15

| | Absolute value. | x | = x when x > 0

 | x | = 0 when x == 0

 | x | = −x when x < 0

% Modulus operator. Defined only for positive numbers.

Sign() Sign.
 Sign(x) = 1 when x > 0
 Sign(x) = 0 when x == 0

 Sign(x) = −1 when x < 0

INT () Truncation to integer operator. Returns the integer part of the real-valued argument.

NINT () Nearest integer operator. Returns the nearest integer value to the real-valued argument. Half-integer
values are rounded away from zero.

sin Sine.

cos Cosine.

exp Exponential.

√ Square root.

log10 Logarithm to base ten.

loge Logarithm to base e.

log2 Logarithm to base 2.

4.2 Logical Operators

|| Logical OR.

&& Logical AND.

! Logical NOT

4.3 Relational Operators

> Greater than.

>= Greater than or equal to.

< Less than.

<= Less than or equal to.

== Equal to.

!= Not equal to.

max [,...,] the maximum value in the argument list.

min [,...,] the minimum value in the argument list.

ISO/IEC 13818-7:2006(E)

16 © ISO/IEC 2006 – All rights reserved

4.4 Bitwise Operators

A twos complement number representation is assumed where the bitwise operators are used.

& AND

| OR

>> Shift right with sign extension.

<< Shift left with zero fill.

4.5 Assignment

= Assignment operator.

4.6 Mnemonics

The following mnemonics are defined to describe the different data types used in the coded bitstream.

bslbf Bit string, left bit first, where "left" is the order in which bit strings are written in
ISO/IEC 13818. Bit strings are written as a string of 1s and 0s within single quote
marks, e.g. '1000 0001'. Blanks within a bit string are for ease of reading and have no
significance.

L, C, R, LS, RS Left, center, right, left surround and right surround audio signals

rpchof Remainder polynomial coefficients, highest order first. (Audio)

uimsbf Unsigned integer, most significant bit first.

vlclbf Variable length code, left bit first, where "left" refers to the order in which the VLC
codes are written.

window Number of the actual time slot in case of block_type == 2, 0 <= window <= 2. (Audio)

The byte order of multi-byte words is most significant byte first.

4.7 Constants

π 3.14159265358...

e 2.71828182845...

5 Method of Describing Bitstream Syntax

The bitstream retrieved by the decoder is described in clause 6. Each data item in the bitstream is in bold
type. It is described by

• its name;

• its length in bits, where "X..Y" indicates that the number of bits is one of the values between X and Y
including X and Y. "{X;Y}" means the number of bits is X or Y, depending on the value of other data
elements in the bitstream;

• a mnemonic for its type and order of transmission.

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 17

The action caused by a decoded data element in a bitstream depends on the value of that data element and
on data elements previously decoded. The decoding of the data elements and the definition of the state
variables used in their decoding are described in the clauses following the syntax clause. The following
constructs are used to express the conditions when data elements are present, and are in normal type:

Note this syntax uses the 'C'-code convention that a variable or expression evaluating to a non-zero value is
equivalent to a condition that is true.

while (condition) {
 data_element;
 . . .
}

If the condition is true, then the group of data elements occurs next in
the data stream. This repeats until the condition is not true.

do {
 data_element;
 . . .
} while (condition)

The data element always occurs at least once. The data element is
repeated until the condition is not true.

if (condition) {
 data_element;
 . . .
}

If the condition is true, then the first group of data elements occurs
next in the data stream

else {
 data_element;
 . . .
}

If the condition is not true, then the second group of data elements
occurs next in the data stream.

switch (expression) {
 case const-expr:
 data_element;
 break;
 case const-expr:
 data_element;
}

If the condition formed by the comparison of expression and const-
expr. is true, then the data stream continues with the subsequent data
elements. An optionally break statement can be used to immediately
leave the switch, data elements beyond a break do not occur in the
data stream.

for (expr1; expr2; expr3)
{
 data_element;
 . . .
}

Expr1 is an expression specifying the initialisation of the loop.
Normally it specifies the initial state of the counter. Expr2 is a
condition specifying a test made before each iteration of the loop. The
loop terminates when the condition is not true. Expr3 is an expression
that is performed at the end of each iteration of the loop, normally it
increments a counter.

Note that the most common usage of this construct is as follows:

for (i = 0; i < n; i++) {
 data_element
 . . .
}

The group of data elements occurs n times. Conditional constructs
within the group of data elements may depend on the value of the
loop control variable i, which is set to zero for the first occurrence,
incremented to one for the second occurrence, and so forth.

As noted, the group of data elements may contain nested conditional constructs. For compactness, the {} may
be omitted when only one data element follows.

ISO/IEC 13818-7:2006(E)

18 © ISO/IEC 2006 – All rights reserved

data_element [] data_element [] is an array of data. The number of data elements is
indicated by the context.

data_element [n] data_element [n] is the n+1th element of an array of data.
data_element [m][n] data_element [m][n] is the m+1,n+1 th element of a two-dimensional

array of data.
data_element [l][m][n] data_element [l][m][n] is the l+1,m+1,n+1 th element of a three-

dimensional array of data.
data_element [m..n] data_element [m..n]is the inclusive range of bits between bit m and bit

n in the data_element.

While the syntax is expressed in procedural terms, it should not be assumed that clause 6 implements a
satisfactory decoding procedure. In particular, it defines a correct and error-free input bitstream. Actual
decoders must include a means to look for start codes in order to begin decoding correctly.

Definition of nextbits function

The function nextbits() permits comparison of a bit string with the next bits to be decoded in the bitstream.

6 Syntax

6.1 Audio Data Interchange Format, ADIF

Table 2 — Syntax of adif_sequence()

Syntax No. of bits Mnemonic

adif_sequence()
{
 adif_header();
 byte_alignment();
 raw_data_stream();
}

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 19

Table 3 — Syntax of adif_header()

Syntax No. of bits Mnemonic

adif_header()

{

 adif_id; 32 bslbf

 copyright_id_present; 1 bslbf

 if (copyright_id_present) {

 copyright_id; 72 bslbf

 }

 original_copy; 1 bslbf

 home; 1 bslbf

 bitstream_type; 1 bslbf

 bitrate; 23 uimsbf

 num_program_config_elements; 4 bslbf

 if (bitstream_type == ‘0’) {

 adif_buffer_fullness; 20 uimsbf

 }

 for (i = 0; i < num_program_config_elements + 1; i++) {

 program_config_element();

 }

}

6.2 Audio Data Transport Stream, ADTS

Table 4 — Syntax of adts_sequence()

Syntax No. of bits Mnemonic

adts_sequence()
{
 while (nextbits() == syncword) {
 adts_frame();
 }
}

Table 5 — Syntax of adts_frame()

Syntax No. of bits Mnemonic

adts_frame()
{
 adts_fixed_header();
 adts_variable_header();
 if (number_of_raw_data_blocks_in_frame == 0) {
 adts_error_check();
 raw_data_block();
 }
 else {
 adts_header_error_check();
 for (i = 0; i <= number_of_raw_data_blocks_in_frame;
i++) {

 raw_data_block();
 adts_raw_data_block_error_check();
 }
 }
}

ISO/IEC 13818-7:2006(E)

20 © ISO/IEC 2006 – All rights reserved

Table 6 — Syntax of adts_header_error_check()

Syntax No. of bits Mnemoni
c

adts_header_error_check ()
{
 if (protection_absent == ‘0’) {
 for (i = 1; i <= number_of_raw_data_blocks_in_frame; i++) {
 raw_data_block_position[i]; 16 uimsfb
 }
 crc_check; 16 rpchof
 }
}

Table 7 — Syntax of adts_raw_data_block_error_check()

Syntax No. of bits Mnemonic

adts_raw_data_block_error_check()
{
 if (protection_absent == ‘0’)
 crc_check; 16 rpchof
}

6.2.1 Fixed Header of ADTS

Table 8 — Syntax of adts_fixed_header()

Syntax No. of bits Mnemonic

adts_fixed_header()
{
 syncword; 12 bslbf
 ID; 1 bslbf
 layer; 2 uimsbf
 protection_absent; 1 bslbf
 profile; 2 uimsbf
 sampling_frequency_index; 4 uimsbf
 private_bit; 1 bslbf
 channel_configuration; 3 uimsbf
 original_copy; 1 bslbf
 home; 1 bslbf
}

6.2.2 Variable Header of ADTS

Table 9 — Syntax of adts_variable_header()

Syntax No. of bits Mnemonic

adts_variable_header()
{
 copyright_identification_bit; 1 bslbf
 copyright_identification_start; 1 bslbf
 aac_frame_length; 13 bslbf
 adts_buffer_fullness; 11 bslbf
 number_of_raw_data_blocks_in_frame; 2 uimsfb
}

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 21

6.2.3 Error Detection

Table 10 — Syntax of adts_error_check()

Syntax No. of bits Mnemonic

adts_error_check()
{
 if (protection_absent == ‘0’)
 crc_check; 16 rpchof
}

6.3 Raw Data

Table 11 — Syntax of raw_data_stream()

Syntax No. of bits Mnemonic

raw_data_stream()
{
 while (data_available()) {
 raw_data_block();
 }
}

Table 12 — Syntax of raw_data_block()

Syntax No. of bits Mnemonic

raw_data_block()
{
 while ((id = id_syn_ele) != ID_END) { 3 uimsbf
 switch (id) {
 case ID_SCE: single_channel_element();
 break;
 case ID_CPE: channel_pair_element();
 break;
 case ID_CCE: coupling_channel_element();
 break;
 case ID_LFE: lfe_channel_element();
 break;
 case ID_DSE: data_stream_element();
 break;
 case ID_PCE: program_config_element();
 break;
 case ID_FIL: fill_element();
 }
 }
 byte_alignment();
}

ISO/IEC 13818-7:2006(E)

22 © ISO/IEC 2006 – All rights reserved

Table 13 — Syntax of single_channel_element()

Syntax No. of bits Mnemonic

single_channel_element()
{
 element_instance_tag; 4 uimsbf
 individual_channel_stream(0);
}

Table 14 — Syntax of channel_pair_element()

Syntax No. of bits Mnemonic

channel_pair_element()
{
 element_instance_tag; 4 uimsbf
 common_window; 1 uimsbf
 if (common_window) {
 ics_info();
 ms_mask_present; 2 uimsbf
 if (ms_mask_present == 1) {
 for (g = 0; g < num_window_groups; g++) {
 for (sfb = 0; sfb < max_sfb; sfb++) {
 ms_used[g][sfb]; 1 uimsbf
 }
 }
 }
 }
 individual_channel_stream(common_window);
 individual_channel_stream(common_window);
}

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 23

Table 15 — Syntax of ics_info()

Syntax No. of bits Mnemonic

ics_info()
{
 ics_reserved_bit; 1 bslbf
 window_sequence; 2 uimsbf
 window_shape; 1 uimsbf
 if (window_sequence == EIGHT_SHORT_SEQUENCE) {
 max_sfb; 4 uimsbf
 scale_factor_grouping; 7 uimsbf
 }
 else {
 max_sfb; 6 uimsbf
 predictor_data_present; 1 uimsbf
 if (predictor_data_present) {
 predictor_reset; 1 uimsbf
 if (predictor_reset) {
 predictor_reset_group_number; 5 uimsbf
 }
 for (sfb = 0; sfb < min(max_sfb,
 PRED_SFB_MAX); sfb++) {

 prediction_used[sfb]; 1 uimsbf
 }
 }
 }
}

Table 16 — Syntax of individual_channel_stream()

Syntax No. of bits Mnemonic

individual_channel_stream(common_window)
{
 global_gain; 8 uimsbf
 if (!common_window)
 ics_info();
 section_data();
 scale_factor_data();

 pulse_data_present; 1 uismbf
 if (pulse_data_present) {
 pulse_data();
 }

 tns_data_present; 1 uimsbf
 if (tns_data_present) {
 tns_data();
 }

 gain_control_data_present; 1 uimsbf
 if (gain_control_data_present) {
 gain_control_data();
 }

 spectral_data();
}

ISO/IEC 13818-7:2006(E)

24 © ISO/IEC 2006 – All rights reserved

Table 17 — Syntax of section_data()

Syntax No. of bits Mnemonic

section_data()
{
 if (window_sequence == EIGHT_SHORT_SEQUENCE)
 sect_esc_val = (1<<3) - 1;
 else
 sect_esc_val = (1<<5) - 1;

 for (g = 0; g < num_window_groups; g++) {
 k = 0;
 i = 0;
 while (k < max_sfb) {
 sect_cb[g][i]; 4 uimsbf
 sect_len = 0;
 while (sect_len_incr == sect_esc_val) { {3;5} uimsbf
 sect_len += sect_esc_val;
 }
 sect_len += sect_len_incr;
 sect_start[g][i] = k;
 sect_end[g][i] = k+sect_len;
 for (sfb = k; sfb < k+sect_len; sfb++)
 sfb_cb[g][sfb] = sect_cb[g][i];
 k += sect_len;
 i++;
 }
 num_sec[g] = i;
 }
}

Table 18 — Syntax of scale_factor_data()

Syntax No. of bits Mnemonic

scale_factor_data()
{
 for (g = 0; g < num_window_groups; g++) {
 for (sfb = 0; sfb < max_sfb; sfb++) {
 if (sfb_cb[g][sfb] != ZERO_HCB) {
 if (is_intensity(g,sfb))
 hcod_sf[dpcm_is_position[g][sfb]]; 1..19 vlclbf
 else
 hcod_sf[dpcm_sf[g][sfb]]; 1..19 vlclbf
 }
 }
 }
}

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 25

Table 19 — Syntax of tns_data()

Syntax No. of bits Mnemonic

tns_data()
{
 for (w = 0; w < num_windows; w++) {
 n_filt[w]; 1..2 uimsbf
 if (n_filt[w])
 coef_res[w]; 1 uimsbf
 for (filt = 0; filt < n_filt[w]; filt++) {
 length[w][filt]; {4;6} uimsbf
 order[w][filt]; {3;5} uimsbf
 if (order[w][filt]) {
 direction[w][filt]; 1 uimsbf
 coef_compress[w][filt]; 1 uimsbf
 for (i = 0; i < order[w][filt]; i++)
 coef[w][filt][i]; 2..4 uimsbf
 }
 }
 }
}

Table 20 — Syntax of spectral_data()

Syntax No. of bits Mnemonic

spectral_data()
{
 for (g = 0; g < num_window_groups; g++) {
 for (i = 0; i < num_sec[g]; i++) {
 if (sect_cb[g][i] != ZERO_HCB &&
 sect_cb[g][i] <= ESC_HCB) {

 for (k = sect_sfb_offset[g][sect_start[g][i]];
 k < sect_sfb_offset[g][sect_end[g][i]];) {
 if (sect_cb[g][i]<FIRST_PAIR_HCB) {
 hcod[sect_cb[g][i]][w][x][y][z]; 1..16 vlclbf
 if (unsigned_cb[sect_cb[g][i]])
 quad_sign_bits; 0..4 bslbf
 k += QUAD_LEN;
 }
 else {
 hcod[sect_cb[g][i]][y][z]; 1..15 vlclbf
 if (unsigned_cb[sect_cb[g][i]])
 pair_sign_bits; 0..2 bslbf
 k += PAIR_LEN;
 if (sect_cb[g][i] == ESC_HCB) {
 if (y == ESC_FLAG)
 hcod_esc_y; 5..21 vlclbf
 if (z == ESC_FLAG)
 hcod_esc_z; 5..21 vlclbf
 }
 }
 }
 }
 }
 }
}

ISO/IEC 13818-7:2006(E)

26 © ISO/IEC 2006 – All rights reserved

Table 21 — Syntax of pulse_data()

Syntax No. of bits Mnemonic

pulse_data() {
 number_pulse; 2 uimsbf
 pulse_start_sfb; 6 uimsbf
 for (i = 0; i < number_pulse+1; i++) {
 pulse_offset[i]; 5 uimsbf
 pulse_amp[i]; 4 uimsbf
 }
}

Table 22 — Syntax of coupling_channel_element()

Syntax No. of bits Mnemonic

coupling_channel_element()
{
 element_instance_tag; 4 uimsbf
 ind_sw_cce_flag; 1 uimsbf
 num_coupled_elements; 3 uimsbf
 num_gain_element_lists = 0;
 for (c = 0; c < num_coupled_elements+1; c++) {
 num_gain_element_lists++;
 cc_target_is_cpe[c]; 1 uimsbf
 cc_target_tag_select[c]; 4 uimsbf
 if (cc_target_is_cpe[c]) {
 cc_l[c]; 1 uimsbf
 cc_r[c]; 1 uimsbf
 if (cc_l[c] && cc_r[c])
 num_gain_element_lists++;
 }
 }
 cc_domain; 1 uimsbf
 gain_element_sign; 1 uimsbf
 gain_element_scale; 2 uimsbf

 individual_channel_stream(0);

 for (c = 1; c < num_gain_element_lists; c++) {
 if (ind_sw_cce_flag) {
 cge = 1;
 } else {
 common_gain_element_present[c]; 1 uimsbf
 cge = common_gain_element_present[c];
 }
 if (cge)
 hcod_sf[common_gain_element[c]]; 1..19 vlclbf
 else {
 for (g = 0; g < num_window_groups; g++) {
 for (sfb = 0; sfb < max_sfb; sfb++) {
 if (sfb_cb[g][sfb] != ZERO_HCB);
 hcod_sf[dpcm_gain_element[c][g][sfb]]; 1..19 vlclbf
 }
 }
 }
 }
}

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 27

Table 23 — Syntax of lfe_channel_element()

Syntax No. of bits Mnemonic

lfe_channel_element()
{
 element_instance_tag; 4 uimsbf

 individual_channel_stream(0);
}

Table 24 — Syntax of data_stream_element()

Syntax No. of bits Mnemonic

data_stream_element()
{
 element_instance_tag; 4 uimsbf
 data_byte_align_flag; 1 uimsbf
 cnt = count; 8 uimsbf
 if (cnt == 255) {
 cnt += esc_count; 8 uimsbf
 }
 if (data_byte_align_flag) {
 byte_alignment();
 }
 for (i = 0; i < cnt; i++) {
 data_stream_byte[element_instance_tag][i]; 8 uimsbf
 }
}

ISO/IEC 13818-7:2006(E)

28 © ISO/IEC 2006 – All rights reserved

Table 25 — Syntax of program_config_element()

Syntax No. of bits Mnemonic

program_config_element()
{
 element_instance_tag; 4 uimsbf
 profile; 2 uimsbf
 sampling_frequency_index; 4 uimsbf
 num_front_channel_elements; 4 uimsbf
 num_side_channel_elements; 4 uimsbf
 num_back_channel_elements; 4 uimsbf
 num_lfe_channel_elements; 2 uimsbf
 num_assoc_data_elements; 3 uimsbf
 num_valid_cc_elements; 4 uimsbf
 mono_mixdown_present; 1 uimsbf
 if (mono_mixdown_present == 1)
 mono_mixdown_element_number; 4 uimsbf
 stereo_mixdown_present; 1 uimsbf
 if (stereo_mixdown_present == 1)
 stereo_mixdown_element_number; 4 uimsbf
 matrix_mixdown_idx_present; 1 uimsbf
 if (matrix_mixdown_idx_present == 1) {
 matrix_mixdown_idx ; 2 uimsbf
 pseudo_surround_enable; 1 uimsbf
 }
 for (i = 0; i < num_front_channel_elements; i++) {
 front_element_is_cpe[i]; 1 bslbf
 front_element_tag_select[i]; 4 uimsbf
 }
 for (i = 0; i < num_side_channel_elements; i++) {
 side_element_is_cpe[i]; 1 bslbf
 side_element_tag_select[i]; 4 uimsbf
 }
 for (i = 0; i < num_back_channel_elements; i++) {
 back_element_is_cpe[i]; 1 bslbf
 back_element_tag_select[i]; 4 uimsbf
 }
 for (i = 0; i < num_lfe_channel_elements; i++)
 lfe_element_tag_select[i]; 4 uimsbf
 for (i = 0; i < num_assoc_data_elements; i++)
 assoc_data_element_tag_select[i]; 4 uimsbf
 for (i = 0; i < num_valid_cc_elements; i++) {
 cc_element_is_ind_sw[i]; 1 uimsbf
 valid_cc_element_tag_select[i]; 4 uimsbf
 }
 byte_alignment();
 comment_field_bytes; 8 uimsbf
 for (i = 0; i < comment_field_bytes; i++)
 comment_field_data[i]; 8 uimsbf
}

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 29

Table 26 — Syntax of fill_element()

Syntax No. of bits Mnemonic

fill_element()
{
 cnt = count; 4 uimsbf
 if (cnt == 15)
 cnt += esc_count - 1; 8 uimsbf
 while (cnt > 0) {
 cnt -= extension_payload(cnt);
 }
}

ISO/IEC 13818-7:2006(E)

30 © ISO/IEC 2006 – All rights reserved

Table 27 — Syntax of gain_control_data()

Syntax No. of bits Mnemonic

gain_control_data()
{
 max_band; 2 uimsbf

 if (window_sequence == ONLY_LONG_SEQUENCE) {

 for (bd = 1; bd <= max_band; bd++) {
 for (wd = 0; wd < 1; wd++) {
 adjust_num[bd][wd]; 3 uimsbf
 for (ad = 0; ad < adjust_num[bd][wd]; ad++) {
 alevcode[bd][wd][ad]; 4 uimsbf
 aloccode[bd][wd][ad]; 5 uimsbf
 }
 }
 }
 }
 else if (window_sequence == LONG_START_SEQUENCE)
{

 for (bd = 1; bd <= max_band; bd++) {
 for (wd = 0; wd < 2; wd++) {
 adjust_num[bd][wd]; 3 uimsbf
 for (ad = 0; ad < adjust_num[bd][wd]; ad++) {
 alevcode[bd][wd][ad]; 4 uimsbf
 if (wd == 0)
 aloccode[bd][wd][ad]; 4 uimsbf
 else
 aloccode[bd][wd][ad]; 2 uimsbf
 }
 }
 }
 }
 else if (window_sequence ==
EIGHT_SHORT_SEQUENCE) {

 for (bd = 1; bd <= max_band; bd++) {
 for (wd = 0; wd < 8; wd++) {
 adjust_num[bd][wd]; 3 uimsbf
 for (ad = 0; ad < adjust_num[bd][wd]; ad++) {
 alevcode[bd][wd][ad]; 4 uimsbf
 aloccode[bd][wd][ad]; 2 uimsbf
 }
 }
 }
 }
 else if (window_sequence == LONG_STOP_SEQUENCE) {
 for (bd = 1; bd <= max_band; bd++) {
 for (wd = 0; wd < 2; wd++) {
 adjust_num[bd][wd]; 3 uimsbf
 for (ad = 0; ad < adjust_num[bd][wd]; ad++) {
 alevcode[bd][wd][ad]; 4 uimsbf
 if (wd == 0)
 aloccode[bd][wd][ad]; 4 uimsbf
 else
 aloccode[bd][wd][ad]; 5 uimsbf
 }
 }
 }
 }
}

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 31

Table 28 — Syntax of extension_payload()

extension_payload(cnt)
{
 extension_type; 4 uimsbf
 switch (extension_type) {
 case EXT_DYNAMIC_RANGE:
 n = dynamic_range_info();
 return n;
 case EXT_SBR_DATA:
 return sbr_extension_data(id_aac, 0); Note 1
 case EXT_SBR_DATA_CRC:
 return sbr_extension_data(id_aac, 1); Note 1
 case EXT_FILL_DATA:
 fill_nibble; /* must be ‘0000’ */ 4 uimsbf

 for (i = 0; i < cnt-1; i++)
 fill_byte[i]; /* must be ‘10100101’ */ 8 uimsbf

 return cnt;
 case default:
 for (i = 0; i < 8*(cnt-1)+4; i++)
 other_bits[i]; 1 uimsbf
 return cnt;
 }
}

Note 1: id_aac is the id_syn_ele of the corresponding AAC element (ID_SCE or ID_CPE)
or ID_SCE in case of CCE.

ISO/IEC 13818-7:2006(E)

32 © ISO/IEC 2006 – All rights reserved

Table 29 — Syntax of dynamic_range_info()

Syntax No. of bits Mnemonic

dynamic_range_info()
{
 n = 1;
 drc_num_bands = 1;
 pce_tag_present; 1 uimsbf
 if (pce_tag_present == 1) {
 pce_ instance_tag; 4 uimsbf
 drc_tag_reserved_bits; 4
 n++;
 }
 excluded_chns_present; 1 uimsbf
 if (excluded_chns_present == 1) {
 n += excluded_channels();
 }
 drc_bands_present ; 1 uimsbf
 if (drc_bands_present == 1) {
 drc_band_incr; 4 uimsbf
 drc_bands_reserved_bits; 4 uimsbf
 n++;
 drc_num_bands = drc_num_bands + drc_band_incr;
 for (i = 0; i < drc_num_bands; i++) {
 drc_band_top[i]; 8 uimsbf
 n++;
 }
 }
 prog_ref_level_present; 1 uimsbf
 if (prog_ref_level_present == 1) {
 prog_ref_level; 7 uimsbf
 prog_ref_level_reserved_bits; 1 uimsbf
 n++;
 }
 for (i = 0; i < drc_num_bands; i++) {
 dyn_rng_sgn[i]; 1 uimsbf
 dyn_rng_ctl[i]; 7 uimsbf
 n++;
 }
 return n;
}

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 33

Table 30 — Syntax of excluded_channels()

Syntax No. Of bits Mnemonic

excluded_channels()
{
 n = 0;
 num_excl_chan = 70;
 for (i = 0; i < 7; i++)
 exclude_mask[i]; 1 uimsbf
 n++;
 while (additional_excluded_chns[n-1] == 1) { 1 uimsbf
 for (i = num_excl_chan; i < num_excl_chan+7; i++)
 exclude_mask[i]; 1 uimsbf
 n++;
 num_excl_chan += 7;
 }
 return n;
}

7 Profiles and Profile Interoperability

7.1 Profiles

There are three profiles identified in the MPEG-2 AAC standard:

 Main Profile

 Low Complexity Profile

 Scalable Sampling Rate Profile

In the program_config_element() and adts_fixed_header(), a two bit field indicates the profile in use:

Table 31 — Profiles

index profile

 0 Main profile

 1 Low Complexity profile (LC)

 2 Scalable Sampling Rate profile (SSR)

 3 (reserved)

7.1.1 Main

The Main profile is used when memory cost is not significant, and when there is substantial processing power
available. With the exception of the gain control tool, all parts of the tools may be used in order to provide the
best data compression possible. There shall be only one program (in the sense of what is specified in a
program_config_element()) in a Main profile bitstream. The program in a Main profile bitstream shall not
contain any mono or stereo mixdown elements.

7.1.2 Low Complexity

The Low Complexity profile is used when RAM usage, processing power, and compression requirements are
all present. In the low complexity profile, prediction, and gain control tool are not permitted and TNS order is
limited. There shall be only one program (in the sense of what is specified in a program_config_element()) in a
Low Complexity profile bitstream. The program in a Low Complexity profile bitstream shall not contain any
mono or stereo mixdown elements.

ISO/IEC 13818-7:2006(E)

34 © ISO/IEC 2006 – All rights reserved

7.1.3 Scalable Sampling Rate

In the Scalable Sampling Rate profile, the gain-control tool is required. Prediction and coupling channels are
not permitted, and TNS order and bandwidth are limited. Gain control is not used in the lowest of the 4 PQF
subbands. In the case of a reduced audio bandwidth, the SSR profile will scale accordingly in complexity.
There shall be only one program (in the sense of what is specified in a program_config_element()) in a
Scalable Sampling Rate profile bitstream. The program in a Scalable Sampling Rate profile bitstream shall not
contain any mono or stereo mixdown elements.

7.1.4 Naming Convention for MPEG-2 AAC Decoders and Bitstreams

A decoder or bitstream may be specified as an A.L.I.D Channel <Profile Name> Profile MPEG-2 AAC decoder
or bitstream, where A is replaced by the number of main audio channels, L by the number of LFE channels, I
by the number of independently switched coupling channels, D by the number of dependently switched
coupling channels, and Profile Name by the actual profile name. An example would be a 5.1.1.1 Channel Main
Profile MPEG-2 AAC Decoder, indicating a decoder capable of decoding 5 main audio channels, one LFE
channel, and one each independently and dependently switched CCE, with each of the channels using the
profile specified. This can be abbreviated as M.5.1.1.1 where the "M" indicates a main profile decoder.
Similarly, a Low Complexity decoder can be specified by a leading "L", and an SSR profile by an "S".

7.1.4.1 Naming Convention for MPEG-2 AAC + MPEG-4 SBR Decoders and Bitstreams

A decoder or bitstream conforming additionally to the MPEG-4 AOT SBR at a certain level may be referenced
in a similar manner by appending "+ SBR / X [HQ/LP]" to the name, where X is replaced with the level of the
HE-AAC profile decoder/bitstream with the same characteristics as specified by ISO/IEC 14496-3. An
example would be a 5.1.1.1 Channel Main Profile MPEG-2 AAC + SBR / 5 HQ Decoder.

7.1.5 Minimum Decoder Capability for Specified Number of Main Audio Channels and Profile

To insure a certain level of interoperability the following minimum decoder capabilities for decoders of a given
profile and number of main audio channels are specified.

Table 32 — Profile dependent minimum decoder capabilities in terms of channel configuration

Number of Main
Audio Channels

Main Profile
Capability

Low
Complexity

Profile
Capability

SSR
Profile

Capability

1 1.0.0.0 1.0.0.0 1.0.0.0

2 2.0.0.0 2.0.0.0 2.0.0.0

3 3.0.1.0 3.0.0.1 3.0.0.0

4 4.0.1.0 4.0.0.1 4.0.0.0

5 5.1.1.1 5.1.0.1 5.1.0.0

7 7.1.1.2 7.1.0.2 7.1.0.0

7.1.6 Profile Dependent Tool Parameters

Maximum TNS order and bandwidth:

According to the profile in use, the value for the constant TNS_MAX_ORDER is set as follows for long
windows: For the main profile the constant TNS_MAX_ORDER is 20, for the low complexity profile and the
scalable sampling rate profile the constant TNS_MAX_ORDER is 12. For short windows, the constant
TNS_MAX_ORDER is 7 for all profiles.

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 35

According to the sampling rate and profile in use, the value for the constant TNS_MAX_BANDS is set as
follows:

Table 33 — Profile and sampling rate dependent definition of TNS_MAX_BANDS

Sampling
Rate
[Hz]

Low Complexity
/ Main Profile

(long windows)

Low Complexity
/ Main Profile

(short windows)

Scalable
Sampling Rate

Profile
(long windows)

Scalable Sampling
Rate Profile

(short windows)

96000 31 9 28 7

88200 31 9 28 7

64000 34 10 27 7

48000 40 14 26 6

44100 42 14 26 6

32000 51 14 26 6

24000 46 14 29 7

22050 46 14 29 7

16000 42 14 23 8

12000 42 14 23 8

11025 42 14 23 8

8000 39 14 19 7

7.2 Profile Interoperability

7.2.1 Interoperability of Bitstreams and Decoders

Any bitstream of a given profile (see Table 34) whose number of main audio channels, LFE channels,
independent coupling channels, and dependent coupling channels is less than or equal to the corresponding
number of channels supported by a decoder of the same profile can be decoded by that decoder.

Table 34 describes the interoperability of the three profiles.

Table 34 — Profile Interoperability

 Encoder Profile

Decoder Profile Main Profile LC Profile SSR Profile

Main Profile yes yes no *

LC Profile no yes no *

SSR Profile no no ** yes

*In Table 34, these entries can be decoded if the main or LC profile decoder is able to parse, but not decode,
the gain control information, but the reconstructed audio will have a limited bandwidth.

**In Table 33, this entry can be decoded, but the bandwidth of the decoded signal will be limited to
approximately 5 kHz, corresponding to the nonaliased portion of the first PQMF filter band.

ISO/IEC 13818-7:2006(E)

36 © ISO/IEC 2006 – All rights reserved

Scalable Sampling Rate

20 kHz

18 kHz

12 kHz

6 kHz

Main

Low Complexity

Figure 3 — Profile Interoperability

8 Overall Data Structure

8.1 AAC Interchange Formats

8.1.1 Overview

The raw_data_block() contains all data which belongs to the audio (including ancillary data). Beyond that,
additional information like sampling_frequency is needed to fully describe an audio sequence. The Audio Data
Interchange Format (ADIF) contains all elements that are necessary to describe a bitstream according to this
standard.

For specific applications some or all of the syntax elements like those specified in the header of the ADIF, e.g.
sampling_rate, may be known to the decoder by other means and hence do not appear in the bitstream.

Furthermore, additional information that varies from block to block (e.g. to enhance the parsability or error
resilience) may be required. Therefore transport streams may be designed for a specific application and are
not specified in this standard. However, one non-normative transport stream, called Audio Data Transport
Stream (ADTS), is described. It may be used for applications in which the decoder can parse this stream.

8.1.2 Audio Data Interchange Format (ADIF)

8.1.2.1 Overview

The Audio Data Interchange Format (ADIF) contains one header at the start of the sequence followed by a
raw_data_stream(). The raw_data_stream() may not contain any further program_config_element()’s.

As such, the ADIF is useful only for systems with a defined start and no need to start decoding from within the
audio data stream, such as decoding from disk file. It can be used as an interchange format in that it contains
all information necessary to decode and play the audio data.

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 37

8.1.2.2 Definitions

8.1.2.2.1 Data Functions

adif_sequence() a sequence according to the Audio Data Interchange Format
(Table 2).

adif_header() header of the Audio Data Interchange Format located at the
beginning of an adif_sequence (Table 3).

byte_alignment() Align with respect to the first bit of the header.

raw_data_stream() see subclause 8.2.1 and Table 11.

program_config_element() contains information about the configuration for one program
(Table 3). See subclause 8.5.

8.1.2.2.2 Data Elements

adif_id ID that indicates the Audio Data Interchange Format. Its value is
0x41444946 (most significant bit first), the ASCII representation
of the string „ADIF“ (Table 3).

copyright_id_present indicates whether copyright_id is present or not (Table 3).

copyright_id The field consists of an 8-bit copyright_identifier, followed by a
64-bit copyright_number (Table 3). The copyright identifier is
given by a Registration Authority as designated by SC 29. The
copyright_number is a value which identifies uniquely the
copyrighted material. See ISO/IEC 13818-3, definition of data
element copyright_identification_bit.

original_copy see ISO/IEC 11172-3, definition of data element copyright.

home see ISO/IEC 11172-3, definition of data element original/copy.

bitstream_type a flag indicating the type of a bitstream (Table 3):

‘0’ constant rate bitstream. This bitstream may be
transmitted via a channel with constant rate

‘1’ variable rate bitstream. This bitstream is not designed for
transmission via constant rate channels

bitrate a 23 bit unsigned integer indicating either the bitrate of the
bitstream in bits/sec in case of constant rate bitstream or the
maximum peak bitrate (measured per frame) in case of variable
rate bitstreams. A value of 0 indicates that the bitrate is not
known (Table 3).

num_program_config_element number of program_config_element()´s specified for this
adif_sequence() is equal to num_program_config_element+1
(Table 3). The minimum value is 0 indicating 1
program_config_element().

adif_buffer_fullness state of the bit reservoir after encoding the first raw_data_block()
in the adif_sequence(). It is transmitted as the number of
available bits in the bit reservoir (Table 3).

ISO/IEC 13818-7:2006(E)

38 © ISO/IEC 2006 – All rights reserved

8.1.2.2.3 Help Elements

data_available() Function that returns ‘1’ as long as data is available, otherwise
‘0’.

8.1.3 Audio Data Transport Stream (ADTS)

8.1.3.1 Overview

The Audio Data Transport Stream (ADTS) is similar to syntax used in ISO/IEC 11172-3 and ISO/IEC 13818-3.
This will be recognized by ISO/IEC 11172-3 and ISO/IEC 13818-3 decoders as a “Layer 4” bitstream.

The fixed header of the ADTS contains the syncword plus all parts of the header which are necessary for
decoding and which do not change from frame to frame. The variable header of the ADTS contains header
data which changes from frame to frame.

8.1.3.2 Definitions

8.1.3.2.1 Data Functions

adts_sequence() a sequence according to Audio Data Transport Stream ADTS
(Table 4).

adts_frame() an ADTS frame, consisting of a fixed header, a variable header,
an optional error check and a specified number of
raw_data_block()'s (Table 5).

adts_fixed_header() fixed header of ADTS. The information in this header does not
change from frame to frame. It is repeated every frame to allow
random access into a bitstream bitstream (Table 8).

adts_variable_header() variable header of ADTS. This header is transmitted every frame
as well as the fixed header, but contains data that changes from
frame to frame (Table 9).

adts_error_check() The following bits are protected and fed into the CRC algorithm
in order of their appearance:

• all bits of adts_fixed_header()

• all bits of adts_variable_header()

• first 192 bits of any

o single_channel_element()

o channel_pair_element()

o coupling_channel_element()

o lfe_channel_element()

• First 128 bits of the second individual_channel_stream() in
the channel_pair_element() must be protected.

• All information in any program_config_element() or
data_stream_element() must be protected.

For any element where the specified protection length of 128 or
192 bits exceeds its actual length, the element is zero padded to
the specified protection length for CRC calculation.

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 39

The id_syn_ele bits shall be excluded from CRC protection. If the
length of a CPE is shorter than 192 bits, zero data are appended
to achieve the length of 192 bits. Furthermore, if the first ICS of
the CPE ends at the Nth bit (N<192), the first (192 – N) bits of
the second ICS are protected twice, each time in order of their
appearance. For example, if the second ICS starts at the 190

th
 bit

of CPE, the first 3 bits of the second ICS are protected twice.
Finally, if the length of the second ICS is shorter than 128 bits,
zero data are appended to achieve the length of 128 bits.

adts_header_error_check() The following bits are protected and fed into the CRC algorithm
in order of their appearance:

• all bits of adts_fixed_header()

• all bits of adts_variable_header()

• all bits of every raw_data_block_position[i].

adts_raw_data_block_error_check() With regard to the i-th adts_raw_data_block_error_check(), the
bits of the i-th raw_data_block() are protected and fed into the
CRC algorithm in order of their appearance according to what is
specified with regard to the adts_error_check() with the exception
that no header bits are considered.

raw_data_block() see subclause 8.2.1 and Table 12.

8.1.3.2.2 Data Elements

raw_data_block_position[i] Start position of the i-th raw_data_block() in the adts_frame(),
measured as an offset in bytes from the start position of the first
raw_data_block() in the adts_frame().

crc_check CRC error detection data generated as described in
ISO/IEC 11172-3, subclause 2.4.3.1 (Table 6, Table 7 and
Table 10).

syncword The bit string ‘1111 1111 1111’. See ISO/IEC 11172-3,
subclause 2.4.2.3 (Table 8).

ID MPEG identifier, set to ‘1’. See ISO/IEC 11172-3,
subclause 2.4.2.3 (Table 8).

layer Indicates which layer is used. Set to ‘00’. See ISO/IEC 11172-3,
subclause 2.4.2.3 (Table 8).

protection_absent Indicates whether error_check() data is present or not. Same as
syntax element ‘protection_bit’ in ISO/IEC 11172-3,
subclause 2.4.1 and 2.4.2 (Table 8).

profile profile used. See clause 2 (Table 8).

sampling_frequency_index indicates the sampling frequency used according to the following
table (Table 8):

ISO/IEC 13818-7:2006(E)

40 © ISO/IEC 2006 – All rights reserved

Table 35 — Sampling frequency dependent on sampling_frequency_index

sampling_frequency_index sampling frequeny [Hz]

0x0 96000

0x1 88200

0x2 64000

0x3 48000

0x4 44100

0x5 32000

0x6 24000

0x7 22050

0x8 16000

0x9 12000

0xa 11025

0xb 8000

0xc reserved

0xd reserved

0xe reserved

0xf reserved

private_bit see ISO/IEC 11172-3, subclause 2.4.2.3 (Table 8).

channel_configuration indicates the channel configuration used. If
channel_configuration is greater than 0, the channel
configuration is given in Table 42, see subclause 8.5.3.1. If
channel_configuration equals 0, the channel configuration is not
specified in the header and must be given by a
program_config_element() following as first syntactic element in
the first raw_data_block() after the header (see
subclause 8.5.3.2), or by the implicit configuration (see
subclause 8.5.3.3) or must be known in the application (Table 8).

original_copy see definition in 8.1.2.2.2.

home see definition in 8.1.2.2.2.

copyright_identification_bit One bit of the 72-bit copyright identification field (see
copyright_id above). The bits of this field are transmitted frame
by frame; the first bit is indicated by the
copyright_identification_start bit set to ‘1’. The field consists of an
8-bit copyright_identifier, followed by a 64-bit copyright_number.
The copyright identifier is given by a Registration Authority as
designated by SC29. The copyright_number is a value which
identifies uniquely the copyrighted material. See ISO/IEC 13818-
3, subclause 2.5.2.13 (Table 9).

copyright_identification_start One bit to indicate that the copyright_identification_bit in this
audio frame is the first bit of the 72-bit copyright identification. If
no copyright identification is transmitted, this bit should be kept
'0'.'0' no start of copyright identification in this audio frame '1'
start of copyright identification in this audio frame See
ISO/IEC 13818-3, subclause 2.5.2.13 (Table 9).

aac_frame_length Length of the frame including headers and error_check in bytes
(Table 9).

adts_buffer_fullness state of the bit reservoir in the course of encoding the ADTS
frame, up to and including the first raw_data_block() and the

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 41

optionally following adts_raw_data_block_error_check(). It is
transmitted as the number of available bits in the bit reservoir
divided by NCC divided by 32 and truncated to an integer value
(Table 9). A value of hexadecimal 7FF signals that the bitstream
is a variable rate bitstream. In this case, buffer fullness is not
applicable.

number_of_raw_data_blocks_in_frame Number of raw_data_block()’s that are multiplexed in the
adts_frame() is equal to number_of_raw_data_blocks_in_frame
+ 1. The minimum value is 0 indicating 1 raw_data_block()
(Table 9).

8.2 Raw Data

8.2.1 Definitions

8.2.1.1 Data Functions

raw_data_stream() sequence of raw_data_block()’s.

raw_data_block() block of raw data that contains audio data for a time period of
1024 samples, related information and other data. There are
seven syntactic elements, identified by the data element
id_syn_ele. The audio_channel_element()'s in one
raw_data_stream() and one raw_data_block() must have one
and only one sampling rate. In the raw_data_block(), several
instances of the same syntactic element may occur, but must
have a different 4 bit element_instance_tag, except for
data_stream_element()'s and fill_element()'s. Therefore, in one
raw_data_block(), there can be from 0 to at most 16 instances of
any syntactic element, except for data_stream_element()'s and
fill_element()'s, where this limitation does not apply. If multiple
data_stream_element()'s occur which have the same
element_instance_tag then they are part of the same data
stream. The fill_element() has no element_instance_tag (since
the content does not require subsequent reference) and can
occur any number of times. The end of a raw_data_block() is
indicated with a special id_syn_ele (TERM), which may occur
only once in a raw_data_block(). (Table 12).

single_channel_element() abbreviaton SCE. Syntactic element of the bitstream containing
coded data for a single audio channel. A
single_channel_element() basically consists of an
individual_channel_stream(). There may be up to 16 such
elements per raw data block, each one must have a unique
element_instance_tag (Table 13).

channel_pair_element() abbreviation CPE. Syntactic element of the bitstream containing
data for a pair of channels. A channel_pair_element() consists of
two individual_channel_stream()’s and additional joint channel
coding information. The two channels may share common side
information. The channel_pair_element() has the same
restrictions as the single channel element as far as
element_instance_tag, and number of occurrances (Table 14).

coupling_channel_element() Abbreviation CCE. Syntactic element that contains audio data for
a coupling channel. A coupling channel represents the
information for multi-channel intensity for one block, or alternately
for dialogue for multilingual programming. The rules for number

ISO/IEC 13818-7:2006(E)

42 © ISO/IEC 2006 – All rights reserved

of coupling_channel_element()'s and instance tags are as for
single_channel_element()'s (Table 22). See subclause 12.3.

lfe_channel_element() Abbreviation LFE. Syntactic element that contains a low
sampling frequency enhancement channel. The rules for the
number of lfe_channel_element()'s and instance tags are as for
single_channel_element()'s (Table 23). See subclause 8.4.

audio_channel_element() generic term for single_channel_element(),
channel_pair_element(), coupling_channel_element() and
lfe_channel_element().

program_config_element() Abbreviation PCE. Syntactic element that contains program
configuration data. The rules for the number of
program_config_element()’s and element_instance_tag’s are the
same as for single_channel_element()’s (Table 25). PCE’s must
come before all other syntactic elements in a raw_data_block().
See subclause 8.5.

fill_element() Abbreviation FIL. Syntactic element that contains fill data. There
may be any number of fill elements, that can come in any order
in the raw data block (Table 26). See subclause 8.7.

data_stream_element() Abbreviation DSE. Syntactic element that contains data. Again,
there are 16 element_instance_tags. There is, however, no
restriction on the number of data_stream_element()'s with any
one instance tag, as a single data stream may continue across
multiple data_stream_element()'s with the same instance tag
(Table 24). See subclause 8.5.3.

byte_alignment() Align with respect to the first bit of the raw_data_block().

8.2.2 Data Elements

id_syn_ele a data element that identifies either a syntactic element or the
end of a raw_data_block() (Table 12):

Table 36 — Syntaxtic element identification

ID name encoding Abbreviation Syntactic Element

ID_SCE 0x0 SCE single_channel_element()

ID_CPE 0x1 CPE channel_pair_element()

ID_CCE 0x2 CCE coupling_channel_element()

ID_LFE 0x3 LFE lfe_channel_element()

ID_DSE 0x4 DSE data_stream_element()

ID_PCE 0x5 PCE program_config_element()

ID_FIL 0x6 FIL fill_element()

ID_END 0x7 TERM

element_instance_tag Unique instance tag for syntactic elements other than fill_element(). All syntactic
elements containing instance tags may occur more than once, but, except for data_stream_element()'s, must
have a unique element_instance_tag in each raw_data_block(). This tag is also used to reference audio
syntactic elements in single_channel_element()'s, channel_pair_element()'s, lfe_channel_element()'s,
data_channel_element()'s, and coupling_channel_element()'s inside a program_config_element(), and
provides the possibility of up to 16 independent program_config_element()’s (Table 13, Table 14, Table 22,
Table 23, Table 24, Table 25, Table 26).

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 43

8.2.3 Buffer Requirements

8.2.3.1 Minimum Decoder Input Buffer

The following rules are used to calculate the maximum number of bits in the input buffer both for the bitstream
as a whole, for any given program, or for any given SCE/CPE/CCE:

The input buffer size is 6144 bits per SCE or independently switched CCE, plus 12288 bits per CPE
(6144*NCC). Both the total buffer and the individual buffer sizes are limited, so that the buffering limit can be
calculated for either the entire bitstream, any entire program, or the individual audio_channel_element()'s
permitting the decoder to break a multichannel bitstream into separate mono and stereo bitstreams which are
decoded by separate mono and stereo decoders, respectively. All bits for LFE’s or dependent CCE's must be
supplied from the total buffer requirements based on the independent CCE's, SCE's, and CPE's. Furthermore,
all bits required for any DSE’s, PCE’s, FIL’s, or fixed headers, variable headers, byte_alignment, and CRC
must also be supplied from the same total buffer requirements.

8.2.3.2 Bit Reservoir

The bit reservoir is controlled at the encoder. The maximum bit reservoir in the encoder depends on the NCC
and the mean bitrate. The maximum bit reservoir size for constant rate channels can be calculated by
subtracting the mean number of bits per block from the minimum decoder input buffer size. For example, at
96 kbit/s for a stereo signal at 44.1 kHz sampling frequency the mean number of bits per block
(mean_framelength) is (96000 bit/s / 44100 1/s * 1024) = 2229.1156… . This leads to a maximum bit
reservoir size (max_bit_reservoir) of INT (12288 bit - 2229.1156…) = 10058. For variable bitrate channels
the encoder must operate in a way that the input buffer requirements do not exceed the minimum decoder
input buffer.

The state of the bit reservoir (bit_reservoir_state) is transmitted in the buffer_fullness field, either as the state
of the bit reservoir truncated to an integer value (adif_buffer_fullness) or as the state of the bit reservoir
divided by NCC divided by 32 and truncated to an integer value (adts_buffer_fullness).

The bit_reservoir_state of subsequent frames can be derived as follows:

[] [] []framehframelengthframelengtmeanframestatereservoirbitframestateoirbit_reserv −+−= _1___

Framelengths have to be adjusted such that the following restriction is met

[] reservoirmax_bitframestateoirbit_reserv __0 ≤≤

8.2.3.3 Maximum Bitrate

Maximum bitrate:

The maximum bitrate depends on the audio sampling rate. It can be calculated based on the minimum input
buffer size according to the formula:

NCCfrequencysampling

block

samples

block

bit

⋅⋅ _

1024

6144

Table 37 gives some examples of the maximum bitrates per channel depending on the used sampling
frequency.

ISO/IEC 13818-7:2006(E)

44 © ISO/IEC 2006 – All rights reserved

Table 37 — Maximum bitrate depending on the sampling frequency

sampling_frequency maximum bitrate / NCC

48 kHz 288 kbit/s

44.1 kHz 264.6 kbit/s

32 kHz 192 kbit/s

8.2.4 Decoding Process

Assuming that the start of a raw_data_block() is known, it can be decoded without any additional „transport-
level“ information and produces 1024 audio samples per output channel. The sampling rate of the audio
signal, as specified by the sampling_frequency_index, may be specified in a program_config_element() or it
may be implied in the specific application domain. In the latter case, the sampling_frequency_index must be
deduced in order for the bitstream to be parsed.

Since a given sampling frequency is associated with only one sampling frequency table, and since maximum
flexibility is desired in the range of possible sampling frequencies, the following Table shall be used to
associate an implied sampling frequency with the desired sampling frequency dependent tables.

Table 38 — Sampling frequency mapping

Frequency range (in
Hz)

Use tables for sampling frequency (in
Hz)

f >= 92017 96000

92017 > f >= 75132 88200

75132 > f >= 55426 64000

55426 > f >= 46009 48000

46009 > f >= 37566 44100

37566 > f >= 27713 32000

27713 > f >= 23004 24000

23004 > f >= 18783 22050

18783 > f >= 13856 16000

13856 > f >= 11502 12000

11502 > f >= 9391 11025

9391 > f 8000

The raw_data_stream supports encoding for both constant rate and variable rate channels. In each case the
structure of the bitstream and the operation of the decoder are identical except for some minor qualifications.
For constant rate channels, the encoder may have to insert a FIL element to adjust the rate upwards to
exactly the desired rate. A decoder reading from a constant rate channel must accumulate a minimum number
of bits in its input buffer prior to the start of decoding so that output buffer underrun does not occur. In the case
of variable rate, demand read channels, each raw_data_block() can have the minimum length (rate) such that
the desired audio quality is achieved, and in the decoder there is no minimum input data requirement prior to
the start of decoding.

Examples of the simplest possible bitstreams are:

bitstream segment output signal
<SCE><TERM><SCE><TERM>… mono signal
<CPE><TERM><CPE><TERM>… stereo signal
<SCE><CPE><CPE><LFE><TERM><SCE><CPE><CPE><LFE><TERM>… 5.1 channel signal

where angle brackets (< >) are used to delimit syntactic elements. For the mono signal each SCE must have
the same value in its element_instance_tag, and similarly, for the stereo signal each CPE must have the
same value in its element_instance_tag. For the 5.1 channel signal each SCE must have the same value in

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 45

its element_instance_tag, each CPE associated with the front channel pair must have the same value in its
element_instance_tag, and each CPE associated with the back channel pair must have the same value in its
element_instance_tag.

If these bitstreams are to be transmitted over a constant rate channel then they might include a fill_element()
to adjust the instantaneous bitrate. In this case an example of a coded stereo signal is

<CPE><FIL><TERM><CPE><FIL><TERM>…

If the bitstreams are to carry ancillary data and run over a constant rate channel then an example of a coded
stereo signal is

<CPE><DSE><FIL><TERM><CPE><DSE><FIL><TERM>…

All data_stream_element()'s have the same element_instance_tag if they are part of the same data stream.

8.3 Single Channel Element (SCE), Channel Pair Element (CPE) and Individual Channel
Stream (ICS)

8.3.1 Definitions

8.3.1.1 Data Elements

common_window a flag indicating whether the two individual_channel_stream()’s
share a common ics_info() or not. In case of sharing, the
ics_info() is part of the channel_pair_element() and must be used
for both channels. Otherwise, the ics_info() is part of each
individual_channel_stream() (Table 14).

ics_reserved_bit flag reserved for future use. Shall be '0'.

window_sequence indicates the sequence of windows as defined in Table 44
(Table 15).

window_shape A 1 bit field that determines what window is used for the trailing
part of this analysis window (Table 15).

max_sfb number of scalefactor bands transmitted per group (Table 15).

scale_factor_grouping A bit field that contains information about grouping of short
spectral data (Table 15).

8.3.1.2 Data Functions

individual_channel_stream() contains data necessary to decode one channel (Table 16).

ics_info() contains side information necessary to decode an
individual_channel_stream(). The individual_channel_stream()’s
of a channel_pair_element() may share one common ics_info()
(Table 15).

8.3.1.3 Help Elements

scalefactor window band term for scalefactor bands within a window, given in Table 45 to
Table 57.

scalefactor band term for scalefactor band within a group. In the case of
EIGHT_SHORT_SEQUENCE and grouping a scalefactor band

ISO/IEC 13818-7:2006(E)

46 © ISO/IEC 2006 – All rights reserved

may contain several scalefactor window bands of corresponding
frequency. For all other window_sequences scalefactor bands
and scalefactor window bands are identical.

g group index.

win window index within group.

sfb scalefactor band index within group.

swb scalefactor window band index within window.

bin coefficient index.

num_window_groups number of groups of windows which share one set of
scalefactors.

window_group_length[g] number of windows in each group.

bit_set(bit_field,bit_num) function that returns the value of bit number bit_num of a bit_field
(most right bit is bit 0).

num_windows number of windows of the actual window sequence.

num_swb_long_window number of scalefactor bands for long windows. This number has
to be selected depending on the sampling frequency. See
subclause 8.9.

num_swb_short_window number of scalefactor window bands for short windows. This
number has to be selected depending on the sampling
frequency. See subclause 8.9.

num_swb number of scalefactor window bands for shortwindows in case of
EIGHT_SHORT_SEQUENCE, number of scalefactor window
bands for long windows otherwise.

swb_offset_long_window[swb] Table containing the index of the lowest spectral coefficient of
scalefactor band sfb for long windows. This Table has to be
selected depending on the sampling frequency. See
subclause 8.9.

swb_offset_short_window[swb] Table containing the index of the lowest spectral coefficient of
scalefactor band sfb for short windows. This Table has to be
selected depending on the sampling frequency. See
subclause 8.9.

swb_offset[swb] Table containing the index of the lowest spectral coefficient of
scalefactor band sfb for short windows in case of
EIGHT_SHORT_SEQUENCE, otherwise for long windows.

sect_sfb_offset[g][section] Table that gives the number of the start coefficient for the
section_data() within a group. This offset depends on the
window_sequence and scale_factor_grouping.

sampling_frequency_index see subclause 8.1.2.1.

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 47

8.3.2 Decoding Process

8.3.2.1 Decoding a single_channel_element() and channel_pair_element()

A single_channel_element() is composed of an element_instance_tag and an individual_channel_stream. In
this case ics_info() is always located in the individual_channel_stream.

A channel_pair_element() begins with an element_instance_tag and common_window flag. If the
common_window equals ‘1’, then ics_info() is shared amongst the two individual_channel_stream elements
and the MS information is transmitted. If common_window equals ‘0’, then there is an ics_info() within each
individual_channel_stream and there is no MS information.

8.3.2.2 Decoding an individual_channel_stream()

In the individual_channel_stream, the order of decoding is:

 get global_gain

 get ics_info() (parse bitstream if common information is not present)

 get section_data()

 get scalefactor_data(), if present

 get pulse_data(), if present

 get tns_data(), if present

 get gain_control_data(), if present

 get spectral_data(), if present.

The process of recovering pulse_data is described in clause 9, tns_data in clause 14, and gain_control data in
clause 16. An overview of how to decode ics_info() (subclause 8.3), section data (clause 9), scalefactor data
(clause 9 and 11), and spectral data (clause 9) will be given here.

8.3.2.3 Recovering ics_info()

For single_channel_element()’s ics_info() is always located immediately after the global_gain in the
inidividual_channel_stream(). For a channel_pair_element() there are two possible locations for the ics_info().
If each individual channel in the pair window switch together then the ics_info() is located immediately after
common_window in the channel_pair_element() and common_window is set to 1. Otherwise there is an
ics_info() immediately after global_gain in each of the two individual_channel_stream() in the
channel_pair_element() and common_window is set to 0.

ics_info() carries window information associated with an ICS and thus permits channels in a channel_pair to
switch separately if desired. In addition it carries the max_sfb which places an upper limit on the number of
ms_used[] and predictor_used[] bits that must be transmitted. If the window_sequence is
EIGHT_SHORT_SEQUENCE then scale_factor_grouping is transmitted. If a set of short windows form a
group then they share scalefactors as well as intensity stereo positions and have their spectral coefficients
interleaved. The first short window is always a new group so no grouping bit is transmitted. Subsequent short
windows are in the same group if the associated grouping bit is 1. A new group is started if the associated
grouping bit is 0. It is assumed that grouped short windows have similar signal statistics. Hence their spectra
are interleaved so as to place correlated coefficients next to each other. The manner of interleaving is
indicated in Figure 6. ics_info() also carries the prediction data for the individual channel or channel pair (see
clause 13).

ISO/IEC 13818-7:2006(E)

48 © ISO/IEC 2006 – All rights reserved

8.3.2.4 Recovering Sectioning Data

In the ICS, the information about one long window, or eight short windows, is recovered. The sectioning data
is the first field to be decoded, and describes the Huffman codes that apply to the scalefactor bands in the ICS
(see clause 9 and 11). The form of the section data is:

 sect_cb The codebook for the section

and

 sect_len The length of the section.

This length is recovered by reading the bitstream sequentially for a section length, adding the escape value to
the total length of the section until a non-escape value is found, which is added to establish the total length of
the section. This process is clearly explained in the C-like syntax description. Note that within each group the
sections must delineate the scalefactor bands from zero to max_sfb so that the first section within each group
starts at bands zero and the last section within each group ends at max_sfb.

The sectioning data describes the codebook, and then the length of the section using that codebook, starting
from the first scalefactor band and continuing until the total number of scalefactor bands is reached.

After this description is provided, all scalefactors and spectral data corresponding to codebook zero are
zeroed, and no values corresponding to these scalefactors or spectral data will be transmitted. When
scanning for scale-factor data it is important to note that scalefactors for any scalefactor bands whose
Huffman codebook is zero will be omitted. Similarly, all spectral data associated with Huffman codebook zero
are omitted (see clause 9 and 11).

In addition spectral data associated with the scalefactor bands that have an intensity codebook will not be
transmitted, but intensity steering coefficients will be transmitted in place of the scalefactors, as described in
subclause 12.2.

8.3.2.5 Scalefactor Data Parsing and Decoding

For each scalefactor band that is not in a section coded with the zero codebook (ZERO_HCB), a scalefactor is
transmitted. These will be denoted as ‘active’ scalefactor bands and the associated scalefactors as active
scalefactors. Global gain, the first data element in an ICS, is typically the value of the first active scalefactor.
All scalefactors (and steering coefficients) are transmitted using Huffman coded DPCM relative to the previous
active scalefactor (see clause 9 and 11). The first active scalefactor is differentially coded relative to the global
gain. Note that it is not illegal, merely inefficient, to provide a global_gain that is different from the first active
scalefactor and then a non-zero DPCM value for the first scalefactor DPCM value. If any intensity steering
coefficients are received interspersed with the DPCM scalefactor elements, they are sent to the intensity
stereo module, and are not involved in the DPCM coding of scalefactor values (see subclause 12.2). The
value of the first active scalefactor is usually transmitted as the global_gain with the first DPCM scalefactor
having a zero value. Once the scalefactors are decoded to their integer values, the actual values are found via
a power function (see clause 11).

8.3.2.6 Spectral Data Parsing and Decoding

The spectral data is recovered as the last part of the parsing of an ICS. It consists of all the non-zeroed
coefficients remaining in the spectrum or spectra, ordered as described in the ICS_info. For each non-zero,
non-intensity codebook, the data are recovered via Huffman decoding in quads or pairs, as indicated in the
noiseless coding tool (see clause 9). If the spectral data is associated with an unsigned Huffman codebook,
the necessary sign bits follow the Huffman codeword (see subclause 9.3). In the case of the ESCAPE
codebook, if any escape value is received, a corresponding escape sequence will appear after that Huffman
code. There may be zero, one or two escape sequences for each codeword in the ESCAPE codebook, as
indicated by the presence of escape values in that decoded codeword. For each section the Huffman
decoding continues until all the spectral values in that section have been decoded. Once all sections have
been decoded, the data is multiplied by the decoded scalefactors and deinterleaved if necessary.

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 49

8.3.3 Windows and Window Sequences

Quantization and coding is done in the frequency domain. For this purpose, the time signal is mapped into the
frequency domain in the encoder. The decoder performs the inverse mapping as described in clause 15.
Depending on the signal, the coder may change the time/frequency resolution by using two different windows:
LONG_WINDOW and SHORT_WINDOW. To switch between windows, the transition windows
LONG_START_WINDOW and LONG_STOP_WINDOW are used. Table 43 lists the windows, specifies the
corresponding transform length and shows the shape of the windows schematically. Two transform lengths
are used: 1024 (referred to as long transform) and 128 coefficients (refered to as short transform).

Window sequences are composed of windows in a way that a raw_data_block() always contains data
representing 1024 output samples. The data element window_sequence indicates the window sequence that
is actually used. Table 44 lists how the window sequences are composed of individual windows. Refer to
clause 15 for more detailed information about the transform and the windows.

8.3.4 Scalefactor Bands and Grouping

Many tools of the decoder perform operations on groups of consecutive spectral values called scalefactor
bands (abbreviation ‘sfb’). The width of the scalefactor bands is built in imitation of the critical bands of the
human auditory system. For that reason the number of scalefactor bands in a spectrum and their width
depend on the transform length and the sampling frequency. Table 45 to Table 57 list the offset to the
beginning of each scalefactor band for the transform lengths 1024 and 128 and the different sampling
frequencies, respectively.

To reduce the amount of side information in case of sequences which contain SHORT_WINDOWS,
consecutive SHORT_WINDOWs may be grouped (see Figure 4). The information about the grouping is
contained in the scale_factor_grouping data element. Grouping means that only one set of scalefactors is
transmitted for all grouped windows as if there was only one window. The scalefactors are then applied to the
corresponding spectral data in all grouped windows. To increase the efficiency of the noiseless coding (see
clause 9), the spectral data of a group is transmitted in an interleaved order given in subclause 8.3.5. The
interleaving is done on a scalefactor band by scalefactor band basis, so that the spectral data can be grouped
to form a virtual scalefactor band to which the common scalefactor can be applied. Within this document the
expression ‘scalefactor band’ (abbreviation ‘sfb’) denotes these virtual scalefactor bands. If the scalefactor
bands of the single windows are referred to, the expression ‘scalefactor window band’ (abbreviation ‘swb’) is
used. Due to its influence on the scalefactor bands, grouping affects the meaning of section_data (see
clause 9), the order of spectral data (see subclause 8.3.5), and the total number of scalefactor bands. For a
LONG_WINDOW scalefactor bands and scalefactor window bands are identical since there is only one group
with only one window.

To reduce the amount of information needed for the transmission of side information specific to each
scalefactor band, the data element max_sfb is transmitted. Its value is one greater than the highest active
scalefactor band in all groups. max_sfb has influence on the interpretation of section data (see clause 9), the
transmission of scalefactors (see clause 9 and 11), the transmission of predictor data (see clause 13) and the
transmission of the ms_mask (see subclause 12.1).

Since scalefactor bands are a basic element of the coding algorithm, some help variables and arrays are
needed to describe the decoding process in all tools using scalefactor bands. These help variables depend on
sampling_frequency, window_sequence, scalefactor_grouping and max_sfb and must be built up for each
raw_data_block(). The pseudo code shown below describes

• how to determine the number of windows in a window_sequence num_windows

• how to determine the number of window_groups num_window_groups

• how to determine the number of windows in each group window_group_length[g]

• how to determine the total number of scalefactor window bands num_swb for the actual window type

• how to determine swb_offset[swb], the offset of the first coefficient in scalefactor window band swb of the
window actually used

ISO/IEC 13818-7:2006(E)

50 © ISO/IEC 2006 – All rights reserved

• how to determine sect_sfb_offset[g][section], the offset of the first coefficient in section section. This offset
depends on window_sequence and scale_factor_grouping and is needed to decode the
spectral_data().

A long transform window is always described as a window_group containing a single window. Since the
number of scalefactor bands and their width depend on the sampling frequency, the affected variables are
indexed with sampling_frequency_index to select the appropriate table.

fs_index = sampling_frequency_index;
switch (window_sequence) {
 case ONLY_LONG_SEQUENCE:
 case LONG_START_SEQUENCE:
 case LONG_STOP_SEQUENCE:
 num_windows = 1;
 num_window_groups = 1;
 window_group_length[num_window_groups-1] = 1;
 num_swb = num_swb_long_window[fs_index];
 /* preparation of sect_sfb_offset for long blocks */
 /* also copy the last value! */
 for (i = 0; i < max_sfb + 1; i++) {
 sect_sfb_offset[0][i] = swb_offset_long_window[fs_index][i];
 swb_offset[i] = swb_offset_long_window[fs_index][i];
 }
 break;
 case EIGHT_SHORT_SEQUENCE:
 num_windows = 8;
 num_window_groups = 1;
 window_group_length[num_window_groups-1] = 1;
 num_swb = num_swb_short_window[fs_index];
 for (i = 0; i < num_swb_short_window[fs_index] + 1; i++)
 swb_offset[i] = swb_offset_short_window[fs_index][i];
 for (i = 0; i < num_windows-1; i++) {
 if(bit_set(scale_factor_grouping,6-i)) == 0) {
 num_window_groups += 1;
 window_group_length[num_window_groups-1] = 1;
 }
 else {
 window_group_length[num_window_groups-1] += 1;
 }
 }
 /* preparation of sect_sfb_offset for short blocks */
 for (g = 0; g < num_window_groups; g++) {
 sect_sfb = 0;
 offset = 0;
 for (i = 0; i < max_sfb; i++) {
 width = swb_offset_short_window[fs_index][i+1] -
 swb_offset_short_window[fs_index][i];
 width *= window_group_length[g];
 sect_sfb_offset[g][sect_sfb++] = offset;
 offset += width;
 }
 sect_sfb_offset[g][sect_sfb] = offset;
 }
 break;
 default:
 break;
}

8.3.5 Order of Spectral Coefficients in spectral_data()

For ONLY_LONG_SEQUENCE windows (num_window_groups = 1, window_group_length[0] = 1) the
spectral data is in ascending spectral order, as shown in Figure 5.

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 51

For the EIGHT_SHORT_SEQUENCE window, the spectral order depends on the grouping in the following
manner:

• Groups are ordered sequentially

• Within a group, a scalefactor band consists of the spectral data of all grouped SHORT_WINDOWs for the
associated scalefactor window band. To clarify via example, the length of a group is in the range of one to
eight SHORT_WINDOWs.

• If there are eight groups each with length one (num_window_groups = 8,
window_group_length[0] = 1), the result is a sequence of eight spectrums, each in ascending
spectral order.

• If there is only one group with length eight (num_window_group = 1, window_group_length[0] = 8),
the results is that spectral data of all eight SHORT_WINDOWs is interleaved by scalefactor
window bands.

• Figure 6 shows the spectral ordering for an EIGHT_SHORT_SEQUENCE with grouping of
SHORT_WINDOWs according to Figure 4 (num_window_groups = 4).

• Within a scalefactor window band, the coefficients are in ascending spectral order.

8.3.6 Output Word Length

The global gain for each audio channel is scaled such that the integer part of the output of the IMDCT can be
used directly as a 16-bit PCM audio output to a digital-to-analog (D/A) converter. This is the default mode of
operation and will result in correct audio levels. If the decoder has a D/A converter that has greater than 16-bit
resolution then the output of the IMDCT can be scaled up such that the appropriate number of fractional bits
are included to form the desired D/A word size. In this case the level of the converter output would be
matched to that of a 16-bit D/A, but would have the advantage of greater signal dynamic range and lower
converter noise floor. Similarly, shorter D/A word lengths can be accommodated.

8.4 Low Frequency Enhancement Channel (LFE)

8.4.1 General

In order to maintain a regular structure of the decoder, the lfe_channel_element() is defined as a standard
individual_channel_stream(0) element, i.e. equal to a single_channel_element(). Thus, decoding can be done
using the standard procedure for decoding a single_channel_element().

In order to accomodate a more bitrate and hardware efficient implementation of the LFE decoder, however,
several restrictions apply to the options used for the encoding of this element:

• The window_shape field is always set to 0, i.e. sine window (see subclause 6.3, Table 15).

• The window_sequence field is always set to 0 (ONLY_LONG_SEQUENCE) (see subclause 6.3,
Table 15).

• Only the lowest 12 spectral coefficients of any LFE may be non-zero.

• No Temporal Noise Shaping is used, i.e. tns_data_present is set to 0 (see subclause 6.3, Table 16).

• No prediction is used, i.e. predictor_data_present is set to 0 (see subclause 6.3, Table 15).

The presence of LFE channels depends on the profile used. Refer to clause 7 for detailed information.

8.5 Program Config Element (PCE)

A program_config_element() may occur outside the AAC payload e. g. in the adif_header(), but also inside the
AAC payload as syntactic element in a raw_data_block().

ISO/IEC 13818-7:2006(E)

52 © ISO/IEC 2006 – All rights reserved

8.5.1 Data Functions

byte_alignment() For PCEs within a raw_data_block(), align with respect to the first
bit of the raw_data_block(). For PCEs within the adif_header(),
align with respect to the first bit of the header.

8.5.2 Data Elements

profile The two-bit profile index from Table 31 (Table 25).

sampling_frequency_index Indicates the sampling rate of the program (and all other
programs in this bitstream). See definition in subclause 8.1.2.1
(Table 25).

num_front_channel_elements The number of audio syntactic elements in the front channels,
front center to back center, symmetrically by left and right, or
alternating by left and right in the case of single channel
elements (Table 25).

num_side_channel_elements Number of elements to the side as above (Table 25).

num_back_channel_elements As number of side and front channel elements, for back channels
(Table 25).

num_lfe_channel_elements Number of LFE channel elements associated with this program
(Table 25).

num_assoc_data_elements The number of associated data elements for this program
(Table 25).

num_valid_cc_elements The number of CCE's that can add to the audio data for this
program (Table 25).

mono_mixdown_present One bit, indicating the presence of the mono mixdown element
(Table 25).

mono_mixdown_element_number The number of a specified SCE that is the mono mixdown
(Table 25).

stereo_mixdown_present One bit, indicating that there is a stereo mixdown present
(Table 25).

stereo_mixdown_element_number The number of a specified CPE that is the stereo mixdown
element (Table 25).

matrix_mixdown_idx_present One bit indicating the presence of matrix mixdown information by
means of a stereo matrix coefficient index (see Table 39). For all
configurations other than the 3/2 format this bit must be zero
(Table 25).

matrix_mixdown_idx Two bit field, specifying the index of the mixdown coefficient to
be used in the 5-channel to 2-channel matrix-mixdown. Possible
matrix coefficients are listed in Table 39 (Table 25).

pseudo_surround_enable One bit, indicating the possibility of mixdown for pseudo surround
reproduction (Table 25).

front_element_is_cpe indicates whether a SCE or a CPE is addressed as a front
element (Table 25).‘0’ selects an SCE.‘1’ selects an CPE. The

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 53

instance of the SCE or CPE addressed is given by
front_element_tag_select.

front_element_tag_select The instance_tag of the SCE/CPE addressed as a front element
(Table 25).

side_element_is_cpe see front_element_is_cpe, but for side elements (Table 25).

side_element_tag_select see front_element_tag_select, but for side elements (Table 25).

back_element_is_cpe see front_element_is_cpe, but for back elements (Table 25).

back_element_tag_select see front_element_tag_select, but for back elements (Table 25).

lfe_element_tag_select instance_tag of the LFE addressed (Table 25).

assoc_data_element_tag_select instance_tag of the DSE addressed (Table 25).

valid_cc_element_tag_select instance_tag of the CCE addressed (Table 25).

cc_element_is_ind_sw One bit, indicating that the corresponding CCE is an
independently switched coupling channel (Table 25).

comment_field_bytes The length, in bytes, of the following comment field (Table 25).

comment_field_data The data in the comment field (Table 25).

SCE or CPE elements within the PCE are addressed with two syntax elements. First, an is_cpe syntax
element selects whether a SCE or CPE is addressed. Second, a tag_select syntax element selects the
instance_tag of a SCE/CPE. LFE, CCE and DSE elements are directly addressed with their instance_tag.

8.5.3 Channel configuration

The AAC audio syntax provides three ways to convey the mapping of channels within a set of syntactic
elements to physical locations of speakers.

8.5.3.1 Explicit channel mapping using default channel settings

Default channel mappings are defined in Table 42 (values greater than 0).

8.5.3.2 Explicit channel mapping using a program_config_element()

Any possible channel configuration can be specified using a program_config_element().There are 16 available
PCE’s, and each one can specify a distinct program that is present in the raw data stream. All available PCE’s
within a raw_data_block() must come before all other syntactic elements. Programs may or may not share
audio syntactic elements, for example, programs could share a channel_pair_element() and use distinct
coupling channels for voice over in different languages. A given program_config_element() contains
information pertaining to only one program out of many that may be included in the raw_data_stream().
Included in the PCE are “list of front channels”, using the rule center outwards, left before right. In this list, a
center channel SCE, if any, must come first, and any other SCE’s must appear in pairs, constituting an LR
pair. If only two SCE’s are specified, this signifies one LR stereophonic pair.

After the list of front channels, there is a list of “side channels” consisting of CPE’s, or of pairs of SCE’s. These
are listed in the order of front to back. Again, in the case of a pair of SCE’s, the first is a left channel, the
second a right channel.

ISO/IEC 13818-7:2006(E)

54 © ISO/IEC 2006 – All rights reserved

After the list of side channels, a list of back channels is available, listed from outside in. Any SCE’s except the
last SCE must be paired, and the presence of exactly two SCE’s (alone or preceeded by a CPE) indicates that
the two SCE’s are Left and Right Rear center, respectively.

The configuration indicated by the PCE takes effect at the raw_data_block() containing the PCE. The number
of front, side and back channels as specified in the PCE must be present in that block and all subsequent
raw_data_block()'s until a raw_data_block() containing a new PCE is transmitted.

Other elements are also specified. A list of one or more LFE’s is specified for application to this program. A list
of one or more CCE’s (profile-dependent) is also provided, in order to allow for dialog management as well as
different intensity coupling streams for different channels using the same main channels. A list of data streams
associated with the program can also associate one or more data streams with a program. The program
configuration element also allows for the specification of one monophonic and one stereophonic simulcast
mixdown channel for a program. Note that the MPEG-2 Systems standard ISO/IEC 13818-1 supports
alternate methods of simulcast.

A PCE element is not intended to allow for rapid program changes. At any time when a given PCE, as
selected by its element_instance_tag, defines a new (as opposed to repeated) program, the decoder is not
obliged to provide audio signal continuity.

8.5.3.3 Implicit channel mapping

If no explicit channel mapping is given, the following methods describe the implicit channel mapping:

1) Any number of SCE's may appear (as long as permitted by other constraints, for example profile). If this
number of SCE's is odd, then the first SCE represents the front center channel, and the other SCE's represent
L/R pairs of channels, proceeding from center front outwards and back to center rear.

If the number of SCE's is even, then the SCE's are assigned as pairs as center-front L/R, in pairs proceeding
out and back from center front toward center back.

2) Any number of CPE's or pairs of SCE's may appear. Each CPE or pair of SCE's represents one L/R pair,
proceeding from where the first sets of SCE's left off, pairwise until reaching either center back pair.

3) Any number of SCEs may appear. If this number is even, allocating pairs of SCEs Left/Right, from 2), back
to center back. If this number is odd, allocated as L/R pairs, except for the final SCE, which is assigned to
center back..

4) Any number of LFEs may appear. No speaker mapping is defined in case of multiple LFEs.

In the case of such implicit channel mapping the number and order of SCEs, CPEs and LFEs and the
resulting configuration may not change within the bitstream without sending a program_config_element(), i.e.
an implicit reconfiguration is not allowed.

Other audio syntactic elements that do not imply additional output speakers, such as coupling
channel_element, may follow the listed set of syntactic elements. Obviously non-audio syntactic elements may
be received in addition and in any order relative to the listed syntactic elements.

8.5.4 Matrix-mixdown Method

8.5.4.1 Description

The matrix-mixdown method applies only for mixing a 3-front/2-back speaker configuration, 5-channel
program, down to a stereo or a mono program. It is not applicable to any program with other than the 3/2
configuration.

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 55

8.5.4.2 Matrix-mixdown Process

A derived stereo signal can be generated within a matrix-mixdown decoder by use of one of the two following
sets of equations.

 Set 1:

]2[
211

1
'

]2[
211

1
'

S

S

RACR
A

R

LACL
A

L

⋅++⋅
++

=

⋅++⋅
++

=

 Set 2:

)](2[
2211

1
'

)](2[
2211

1
'

SS

SS

RLACR
A

R

RLACL
A

L

+⋅++⋅
⋅++

=

+⋅−+⋅
⋅++

=

Where L, C, R, LS and RS are the source signals, L’ and R’ are the derived stereo signals and A is the matrix
coefficient indicated by matrix_mixdown_idx. LFE channels are omitted from the mixdown.

If pseudo_surround_enable is not set, then only set 1 should be used. If pseudo_surround_enable is set, then
either set 1 or set 2 equations can be used, depending on whether the receiver has facilities to invoke some
form of surround synthesis.

As further information it should be noted that one can derive a mono signal using the following equation:

 [])(
23

1
SS RLARCL

A
M +⋅+++⋅

⋅+
=

8.5.4.3 Advisory

The matrix-mixdown provision enables a mode of operation which may be beneficial to some operators in
some circumstances. However, it is advised that this method should not be used. The psychoacoustic
principles on which the audio coding are based are violated by this form of post-processing, and a
perceptually faithful reconstruction of the signal cannot be guaranteed. The preferred method is to use the
stereo or mono mixdown channels in the AAC syntax to provide stereo or mono programming which is
specifically created by conventional studio mixing prior to bitrate reduction.

The stereo and mono mixdown channels additionally enable the content provider to separately optimize the
stereo and multichannel program mixes - this is not possible by using the matrix-mixdown method.

It is additionally relevant to note that, due to the algorithms used for the multichannel and stereo mixdown
coding, a better combination of quality and bitrate is usually provided by use of the stereo mixdown channels
than can be provided by the matrix-mixdown process.

ISO/IEC 13818-7:2006(E)

56 © ISO/IEC 2006 – All rights reserved

8.5.4.4 Tables

Table 39 — Matrix-mixdown coefficients

matrix_mixdown_idx A

0 21

1 21

2)22(1

3 0

8.6 Data Stream Element (DSE)

8.6.1 Data Functions

byte_alignment() align with respect to the first bit of the raw_data_block().

8.6.2 Data Elements

data_byte_align_flag One bit indicating that a byte aligment is performed within the

data stream element (Table 24)

count Initial value for length of data stream (Table 24)

esc_count Incremental value of length of data or padding element

(Table 24)

data_stream_byte A data stream byte extracted from bitstream (Table 24)

A data element contains any additional data, e.g. auxiliary information, that is not part of the audio information
itself. Any number of data elements with the same element_instance_tag or up to 16 data elements with
different element_instance_tags are possible. The decoding process of the data element is described in this
clause.

8.6.3 Decoding Process

The first syntactic element to be read is the 1 bit data_byte_align_flag. Next is the 8 bit value count. It
contains the initial byte-length of the data stream. If count equals 255, its value is incremented by a second
8 bit value, esc_count, this final value represents the number of bytes in the data stream element. If
data_byte_align_flag is set, a byte alignment is performed. The bytes of the data stream follow.

8.7 Fill Element (FIL)

8.7.1 Data Elements

count Initial value for length of extension_payload() (Table 26).

esc_count Incremental value for length of extension_payload() (Table 26).

8.7.2 Decoding Process

fill_element()’s might be added to allow for several kinds of extension payloads. Any number of fill_element()’s
is allowed.

The syntactic element count gives the initial value of the length of the fill data. In the same way as for the data
element this value is incremented with the value of esc_count if count equals 15. The resulting number gives
the number of fill_bytes to be read.

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 57

8.8 Extension Payload

8.8.1 General

8.8.1.1 Data Elements

extension_type Four bit field indicating the type of fill element content (Table 26).

8.8.1.2 Decoding Process

Any number of extension_payload()’s are allowed.

The following symbolic abbreviations for values of the extension_type field are defined:

Table 40 — Values of the extension_type data element

Symbol Value of
extension_type

Purpose

EXT_FILL ‘0000’ Bitstream filler

EXT_FILL_DATA ‘0001’ Bitstream data as filler

EXT_DYNAMIC_RANGE ‘1011’ Dynamic range control

EXT_SBR_DATA ‘1101’ SBR enhancement

EXT_SBR_DATA_CRC ‘1110’ SBR enhancement with CRC

- all other values reserved

The ‘reserved’ values might be used for further extension of the syntax in a compatible way.

8.8.2 Fill data and other bits

8.8.2.1 Data Elements

fill_nibble Four bit field for fill (Table 28).

fill_byte Byte to be discarded by the decoder (Table 28).

other_bits Bits to be discarded by the decoder (Table 28).

8.8.2.2 Decoding Process

Fill data shall be added if the total bits for all audio data together with all additional data is lower than the
minimum allowed number of bits in this frame necessary to reach the target bitrate. Under normal conditions
fill bits are avoided and free bits are used to fill up the bit reservoir. Fill bits are written only if the bit reservoir
is full.

Note that fill_nibble is normatively defined to be ‘0000’ and fill_byte is normatively defined to be ‘10100101’ (to

ensure that self-clocked data streams, such as radio modems, can perform reliable clock recovery).

8.8.3 Dynamic Range Control (DRC)

8.8.3.1 Data Elements

pce_tag_present One bit indicating that program element tag is present (Table 29).

pce_instance_tag Tag field that indicates with which program the dynamic range
information is associated (Table 29)

ISO/IEC 13818-7:2006(E)

58 © ISO/IEC 2006 – All rights reserved

drc_tag_reserved_bits Reserved (Table 29)

excluded_chns_present One bit indicating that excluded channels are present (Table 29)

drc_bands_present One bit indicating that DRC multi-band information is present
(Table 29)

drc_band_incr Number of DRC bands greater than 1 having DRC information
(Table 29)

drc_bands_reserved_bits Reserved (Table 29)

drc_band_top[i] Indicates top of i-th DRC band in units of 4 spectral lines
(Table 29).If drc_band_top[i] = k, then the index (w.r.t zero) of the
highest spectral coefficient that is in the i-th DRC band is =
k*4+3. In case of an EIGHT_SHORT_SEQUENCE
window_sequence the index is interpreted as pointing into the
concatenated array of 8*128 (de-interleaved) frequency points
corresponding to the 8 short transforms.

prog_ref_level_present One bit indicating that reference level is present (Table 29).

prog_ref_level Reference level. A measure of long-term program audio level for
all channels combined (Table 29).

prog_ref_level_reserved_bits Reserved (Table 29)

dyn_rng_sgn[i] Dynamic range control sign information. One bit indicating the
sign of dyn_rng_ctl (0 if positive, 1 if negative, (Table 29)

dyn_rng_ctl[i] Dynamic range control magnitude information (Table 29)

exclude_mask[i] Boolean array indicating the audio channels of a program that
are excluded from DRC processing using this DRC information.

additional_excluded_chns[i] One bit indicating that additional excluded channels are present
(Table 30)

8.8.3.2 Decoding Process

The evaluation of potentially available dynamic range control information in the decoder is optional.

prog_ref_level_present indicates that prog_ref_level is being transmitted. This permits prog_ref_level to
be sent as infrequently as desired (e.g. once), although periodic transmission would permit break-in.

prog_ref_level is quantized in 0.25 dB steps using 7 bits, and therefore has a range of approximately 32 dB.
It indicates program level relative to full scale (i.e. dB below full scale), and is reconstructed as:

24/__232767 levelrefproglevel −⋅=

where „full scale level„ is 32767 (prog_ref_level equal to 0).

pce_tag_present indicates that pce_instance_tag is being transmitted. This permits pce_instance_tag to
be sent as infrequently as desired (e.g. once), although periodic transmission would permit break-in.

pce_instance_tag indicates with which program the dynamic range information is associated. If this is not
present then the default program is indicated. Since each AAC bitstream typically has just one program, this
would be the most common mode. Each program in a multi-program bitstream would send its dynamic range

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 59

information in a distinct extension_payload() of the fill_element(). In the multiple program case, the
pce_instance_tag would always have to be signaled.

The drc_tag_reserved_bits fill out the optional fields to an integral number of bytes in length.

The excluded_chns_present bit indicates that channels that are to be excluded from dynamic range
processing will be signaled immediately following this bit. The excluded channel mask information must be
transmitted in each frame where channels are excluded. The following ordering principles are used to assign
the exclude_mask to channel outputs:

• If a PCE is present, the exclude_mask bits correspond to the audio channels in the SCE, CPE, CCE and
LFE syntax elements in the order of their appearance in the PCE. In the case of a CPE, the first
transmitted mask bit corresponds to the first channel in the CPE, the second transmitted mask bit to the
second channel. In the case of a CCE, a mask bit is transmitted only if the coupling channel is specified to
be an independently switched coupling channel.

• If no PCE is present, the exclude_mask bits correspond to the audio channels in the SCE, CPE and LFE
syntax elements in the order of their appearance in the bitstream, followed by the audio channels in the
CCE syntax elements in the order of their appearance in the bitstream. In the case of a CPE, the first
transmitted mask bit corresponds to the first channel in the CPE, the second transmitted mask bit to the
second channel. In the case of a CCE, a mask bit is transmitted only if the coupling channel is specified to
be an independently switched coupling channel.

drc_band_incr is the number of bands greater than one if there is multi-band DRC information.

dyn_rng_ctl is quantized in 0.25 dB steps using a 7-bit unsigned integer, and therefore, in association with
dyn_rng_sgn, has a range of +/-31.75 dB. It is interpreted as a gain value that shall be applied to the
decoded audio output samples of the current frame.

The range supported by the dynamic range information is summarized in the following table:

Table 41 — Range supported by the DRC information

Field bits steps stepsize,
dB

range,
dB

prog_ref_level 7 128 0.25 31.75

dyn_rng_sgn and
dyn_rng_ctl

1 and
7

+/-
127

0.25 +/- 31.75

The dynamic range control process is applied to the spectral data spec[i] of one frame immediately before

the synthesis filterbank. In case of an EIGHT_SHORT_SEQUENCE window_sequence the index i is
interpreted as pointing into the concatenated array of 8*128 (de-interleaved) frequency points corresponding
to the 8 short transforms.

This following pseudo code is for illustrative purposes only, showing one method for applying one set of

dynamic control information to a frame of a target audio channel. The constants ctrl1 and ctrl2 are

compression constants (typically between 0 and 1, zero meaning no compression) that may optionally be
used to scale the dynamic range compression characteristics for levels greater than or less than the program

reference level, respectively. The constant target_level describes the output level desired by the user,

expressed in the same scaling as prog_ref_level.

bottom = 0;
drc_num_bands = 1;
if (drc_bands_present)
 drc_num_bands += drc_band_incr;
else
 drc_band_top[0] = 1024/4 - 1;
for (bd = 0; bd < drc_num_bands; bd++) {
 top = 4 * (drc_band_top[bd] + 1);

ISO/IEC 13818-7:2006(E)

60 © ISO/IEC 2006 – All rights reserved

 /* Decode DRC gain factor */
 if (dyn_rng_sgn[bd])
 factor = 2^(-ctrl1*dyn_rng_ctl[bd]/24); /* compress */
 else
 factor = 2^(ctrl2*dyn_rng_ctl[bd]/24); /* boost */

 /* If program reference normalization is done in the digital domain, modify
 * factor to perform normalization.
 * prog_ref_level can alternatively be passed to the system for modification
 * of the level in the analog domain. Analog level modification avoids
problems
 * with reduced DAC SNR (if signal is attenuated) or clipping
 * (if signal is boosted)
 */
 factor *= 0.5^((target_level-prog_ref_level)/24);

 /* Apply gain factor */
 for (i = bottom; i < top; i++)
 spec[i] *= factor;
 bottom = top;
}

Note the relation between dynamic range control and coupling channels:

• Dependently switched coupling channels are always coupled onto their target channels as spectral
coefficients prior to the DRC processing and synthesis filtering of these channels. Therefore a dependently
switched coupling channel’s signal that couples onto a specific target channel will undergo the DRC
processing of that target channel.

• Since independently switched coupling channels couple to their target channels in the time domain, each
independently switched coupling channel will undergo DRC processing and subsequent synthesis filtering
separate from its target channels. This permits the independently switched coupling channel to have
distinct DRC processing if desired.

8.8.3.3 Persistence of DRC Information

At the beginning of a stream, all DRC information for all channels is assumed to be set to its default value:
program reference level equal to the decoder’s target reference level, one DRC band, with no DRC gain
modification for that band. Unless this data is specifically overwritten, this remains in effect.

There are two cases for the persistence of DRC information that has been transmitted:

• The program reference level is per audio program, and persists until a new value is transmitted, at which
point the new data overwrites the old and takes effect that frame. (It may be appropriate to send this value
periodically to allow bitstream break-in.)

• Other DRC information persists on a per-channel basis. Note that if a channel is excluded via the
appropriate exclude_mask[] bit, then effectively no information is transmitted for that channel in that call
to dynamic_range_info(). The excluded channel mask information must be transmitted in each frame
where channels are excluded.

The rules for retaining per-channel DRC information are as follows:

• If there is no DRC information in a given frame for a given channel, use the information that was used in
the previous frame. (This means that one adjustment can hold for a long time, although it may be
appropriate to transmit the DRC information periodically to permit break-in.)

• If any DRC information for this channel appears in the current frame, the following sequence occurs: first,
overwrite all per-channel DRC information for that channel with the default values (one DRC band, with no
DRC gain modification for that band), then overwrite any per-channel DRC information with the
transmitted values.

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 61

8.8.4 Bandwidth Extension (SBR)

Fill elements containing an extension_payload with an extension_type of EXT_SBR_DATA or
EXT_SBR_DATA_CRC are reserved for SBR enhancement data. In this case, the fill_element count field
must be set equal to the total length in bytes, including the SBR enhancement data plus the extension_type
field.

sbr_extension_data() and the decoding process are defined in ISO/IEC 14496-3.

The SBR fill elements shall be handled according to ISO/IEC 14496-3, subclause 4.5.2.8.2.2 "SBR Extension
Payload for the Audio Object Types AAC main, AAC SSR, AAC LC and AAC LTP". The signaling of SBR shall
be done implicitly as outlined in ISO/IEC 14496-3, subclause 1.6.5 "Signaling of SBR".

8.9 Tables

Table 42 — Channel Configuration

value number of
speakers

audio syntactic elements, listed in
order received

element to speaker mapping

0 - - defined in
program_config_element()
(see subclause 8.5.3.2) or

implicitly given (see
subclause 8.5.3.3)

1 1 single_channel_element() center front speaker

2 2 channel_pair_element() left, right front speakers

3 3 single_channel_element(),
channel_pair_element()

center front speaker
left, right front speakers

4 4 single_channel_element(),
channel_pair_element(),
single_channel_element()

center front speaker
left, right center front speakers,
rear surround

5 5 single_channel_element(),
channel_pair_element(),
channel_pair_element()

center front speaker
left, right front speakers,
left surround, right surround
rear speakers

6 5+1 single_channel_element(),
channel_pair_element(),
channel_pair_element(),
lfe _element()

center front speaker
left, right front speakers,
left surround, right surround
rear speakers,
front low frequency effects
speaker

7 7+1 single_channel_element(),
channel_pair_element(),
channel_pair_element(),
channel_pair_element(),
lfe_element()

center front speaker
left, right center front speakers,
left, right outside front
speakers,
left surround, right surround
rear speakers,
front low frequency effects
speaker

ISO/IEC 13818-7:2006(E)

62 © ISO/IEC 2006 – All rights reserved

Table 43 — Transform windows (for 48 kHz)

window num_swb #coeffs looks like

LONG_WINDOW

49

1024

SHORT_WINDOW

14

128

LONG_START_WINDOW

49

1024

LONG_STOP_WINDOW

49

1024

Table 44 — Window Sequences

value window_sequence num_
windows

looks like

0 ONLY_LONG_SEQUENCE
 = LONG_WINDOW

1

1 LONG_START_SEQUENCE
 = LONG_START_WINDOW

1

2 EIGHT_SHORT_SEQUENCE
 = 8 * SHORT_WINDOW

8

3 LONG_STOP_SEQUENCE
 = LONG_STOP_WINDOW

1

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 63

Table 45 — Scalefactor bands for
LONG_WINDOW, LONG_START_WINDOW, LONG_STOP_WINDOW at 44.1 kHz and 48 kHz

fs [kHz] 44.1, 48

num_swb_long_window 49

swb swb_offset_long_window swb swb_offset_long_window

0 0 25 216

1 4 26 240

2 8 27 264

3 12 28 292

4 16 29 320

5 20 30 352

6 24 31 384

7 28 32 416

8 32 33 448

9 36 34 480

10 40 35 512

11 48 36 544

12 56 37 576

13 64 38 608

14 72 39 640

15 80 40 672

16 88 41 704

17 96 42 736

18 108 43 768

19 120 44 800

20 132 45 832

21 144 46 864

22 160 47 896

23 176 48 928

24 196 1024

Table 46 — Scalefactor bands for SHORT_WINDOW
at 32 kHz, 44.1 kHz and 48 kHz

fs [kHz] 32, 44.1, 48

num_swb_short_window 14

swb swb_offset_short_window swb swb_offset_short_window

0 0 8 44

1 4 9 56

2 8 10 68

3 12 11 80

4 16 12 96

5 20 13 112

6 28 128

7 36

ISO/IEC 13818-7:2006(E)

64 © ISO/IEC 2006 – All rights reserved

Table 47 — Scalefactor bands for
LONG_WINDOW, LONG_START_WINDOW, LONG_STOP_WINDOW

at 32 kHz

fs [kHz] 32

num_swb_long_window 51

swb swb_offset_long_window swb swb_offset_long_window

0 0 26 240

1 4 27 264

2 8 28 292

3 12 29 320

4 16 30 352

5 20 31 384

6 24 32 416

7 28 33 448

8 32 34 480

9 36 35 512

10 40 36 544

11 48 37 576

12 56 38 608

13 64 39 640

14 72 40 672

15 80 41 704

16 88 42 736

17 96 43 768

18 108 44 800

19 120 45 832

20 132 46 864

21 144 47 896

22 160 48 928

23 176 49 960

24 196 50 992

25 216 1024

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 65

Table 48 — Scalefactor bands for
LONG_WINDOW, LONG_START_WINDOW, LONG_STOP_WINDOW at 8 kHz

fs [kHz] 8

num_swb_long_window 40

swb swb_offset_long_window swb swb_offset_long_window

0 0 21 288

1 12 22 308

2 24 23 328

3 36 24 348

4 48 25 372

5 60 26 396

6 72 27 420

7 84 28 448

8 96 29 476

9 108 30 508

10 120 31 544

11 132 32 580

12 144 33 620

13 156 34 664

14 172 35 712

15 188 36 764

16 204 37 820

17 220 38 880

18 236 39 944

19 252 1024

20 268

Table 49 — Scalefactor bands for SHORT_WINDOW at 8 kHz

fs [kHz] 8

num_swb_short_window 15

swb swb_offset_short_window swb swb_offset_short_window

0 0 8 36

1 4 9 44

2 8 10 52

3 12 11 60

4 16 12 72

5 20 13 88

6 24 14 108

7 28 128

ISO/IEC 13818-7:2006(E)

66 © ISO/IEC 2006 – All rights reserved

Table 50 — Scalefactor bands for
LONG_WINDOW, LONG_START_WINDOW, LONG_STOP_WINDOW at 11.025 kHz, 12 kHz and 16 kHz

fs [kHz] 11.025, 12, 16

num_swb_long_window 43

swb swb_offset_long_window swb swb_offset_long_window

0 0 22 228

1 8 23 244

2 16 24 260

3 24 25 280

4 32 26 300

5 40 27 320

6 48 28 344

7 56 29 368

8 64 30 396

9 72 31 424

10 80 32 456

11 88 33 492

12 100 34 532

13 112 35 572

14 124 36 616

15 136 37 664

16 148 38 716

17 160 39 772

18 172 40 832

19 184 41 896

20 196 42 960

21 212 1024

Table 51 — Scalefactor bands for SHORT_WINDOW at 11.025 kHz, 12 kHz and 16 kHz

fs [kHz] 11.025, 12, 16

num_swb_short_window 15

swb swb_offset_short_window swb swb_offset_short_window

0 0 8 32

1 4 9 40

2 8 10 48

3 12 11 60

4 16 12 72

5 20 13 88

6 24 14 108

7 28 128

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 67

Table 52 — Scalefactor bands for
LONG_WINDOW, LONG_START_WINDOW, LONG_STOP_WINDOW at 22.05 kHz and 24 kHz

fs [kHz] 22.05 and 24

num_swb_long_window 47

swb swb_offset_long_window swb swb_offset_long_window

0 0 24 160

1 4 25 172

2 8 26 188

3 12 27 204

4 16 28 220

5 20 29 240

6 24 30 260

7 28 31 284

8 32 32 308

9 36 33 336

10 40 34 364

11 44 35 396

12 52 36 432

13 60 37 468

14 68 38 508

15 76 39 552

16 84 40 600

17 92 41 652

18 100 42 704

19 108 43 768

20 116 44 832

21 124 45 896

22 136 46 960

23 148 1024

Table 53 — Scalefactor bands for SHORT_WINDOW at 22.05 kHz and 24 kHz

fs [kHz] 22.05 and 24

num_swb_short_window 15

swb swb_offset_short_window swb swb_offset_short_window

0 0 8 36

1 4 9 44

2 8 10 52

3 12 11 64

4 16 12 76

5 20 13 92

6 24 14 108

7 28 128

ISO/IEC 13818-7:2006(E)

68 © ISO/IEC 2006 – All rights reserved

Table 54 — Scalefactor bands for
LONG_WINDOW, LONG_START_WINDOW, LONG_STOP_WINDOW at 64 kHz

fs [kHz] 64

num_swb_long_window 47

swb swb_offset_long_window swb swb_offset_long_window

0 0 24 172

1 4 25 192

2 8 26 216

3 12 27 240

4 16 28 268

5 20 29 304

6 24 30 344

7 28 31 384

8 32 32 424

9 36 33 464

10 40 34 504

11 44 35 544

12 48 36 584

13 52 37 624

14 56 38 664

15 64 39 704

16 72 40 744

17 80 41 784

18 88 42 824

19 100 43 864

20 112 44 904

21 124 45 944

22 140 46 984

23 156 1024

Table 55 — Scalefactor bands for SHORT_WINDOW at 64 kHz

fs [kHz] 64

num_swb_short_window 12

swb swb_offset_short_window swb swb_offset_short_window

0 0 7 32

1 4 8 40

2 8 9 48

3 12 10 64

4 16 11 92

5 20 128

6 24

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 69

Table 56 — Scalefactor bands for
LONG_WINDOW, LONG_START_WINDOW, LONG_STOP_WINDOW at 88.2 kHz and 96 kHz

fs [kHz] 88.2 and 96

num_swb_long_window 41

swb swb_offset_long_window swb swb_offset_long_window

0 0 21 120

1 4 22 132

2 8 23 144

3 12 24 156

4 16 25 172

5 20 26 188

6 24 27 212

7 28 28 240

8 32 29 276

9 36 30 320

10 40 31 384

11 44 32 448

12 48 33 512

13 52 34 576

14 56 35 640

15 64 36 704

16 72 37 768

17 80 38 832

18 88 39 896

19 96 40 960

20 108 1024

Table 57 — Scalefactor bands for SHORT_WINDOW at 88.2 kHz and 96 kHz

fs [kHz] 88.2 and 96

num_swb_short_window 12

swb swb_offset_short_window swb swb_offset_short_window

0 0 7 32

1 4 8 40

2 8 9 48

3 12 10 64

4 16 11 92

5 20 128

6 24

ISO/IEC 13818-7:2006(E)

70 © ISO/IEC 2006 – All rights reserved

8.10 Figures

 window_sequence = EIGHT_SHORT_SEQUENCE

num_windows = 8

grouping_bits = ‘1100101’

num_window_groups = 4

window group length[] = { 3, 1, 2, 2 }

3 2 1 0

0 1 2 3 4 5 6 7

group#

window#

Figure 4 — Example for short window grouping

sfb 2sfb 1sfb 0 . .. sfb (num_sfb-1)

Order of scalefactor bands for ONLY_LONG_SEQUENCE

spectral coefficients

Figure 5 — Spectral order of scalefactor bands in case of ONLY_LONG_SEQUENCE

win 2

sfb 0

win 1win 0
. ..

win 2

sfb 1

win 1win 0

sfb 2

win 3

sfb 1

win 3

sfb 0

win 3
. ..

Order of scale factor bands for EIGHT_SHORT_SEQUENCE

window_group_length[] = { 3, 1, ... }

group 0

spectral coefficients

group 1

Figure 6 — Spectral order of scalefactor bands in case of EIGHT_SHORT_SEQUENCE

9 Noiseless Coding

9.1 Tool Description

Noiseless coding is used to further reduce the redundancy of the scalefactors and the quantized spectrum of
each audio channel.

The global_gain is coded as an 8 bit unsigned integer. The first scalefactor associated with the quantized
spectrum is differentially coded relative to the global_gain value and then Huffman coded using the scalefactor
codebook. The remaining scalefactors are differentially coded relative to the previous scalefactor and then
Huffman coded using the scalefactor codebook.

Noiseless coding of the quantized spectrum relies on two divisions of the spectral coefficients. The first is a
division into scalefactor bands that contain a multiple of 4 quantized spectral coefficients. See subclause 8.3.4
and 8.3.5.

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 71

The second division, which is dependent on the quantized spectral data, is a division by scalefactor bands to
form sections. The significance of a section is that the quantized spectrum within the section is represented
using a single Huffman codebook chosen from a set of 11 possible codebooks. The length of a section and its
associated Huffman codebook must be transmitted as side information in addition to the section’s Huffman
coded spectrum. Note that the length of a section is given in scalefactor bands rather than scalefactor window
bands (see subclause 8.3.4). In order to maximize the match of the statistics of the quantized spectrum to that
of the Huffman codebooks the number of sections is permitted to be as large as the number of scalefactor
bands. The maximum size of a section is max_sfb scalefactor bands.

As indicated in Table 59, spectrum Huffman codebooks can represent signed or unsigned n-tuples of
coefficients. For unsigned codebooks, sign bits for every non-zero coefficient in the n-tuple immediately follow
the associated codeword.

The noiseless coding has two ways to represent large quantized spectra. One way is to send the escape flag
from the escape (ESC) Huffman codebook, which signals that the bits immediately following that codeword
plus optional sign bits are an escape sequence that encodes values larger than those represented by the ESC
Huffman codebook. A second way is the pulse escape method, in which relatively large-amplitude coefficients
can be replaced by coefficients with smaller amplitudes in order to enable the use of Huffman code tables with
higher coding efficiency. This replacement is corrected by sending the position of the spectral coefficient and
the differences in amplitude as side information. The frequency information is represented by the combination
of the scalefactor band number to indicate a base frequency and an offset into that scalefactor band.

9.2 Definitions

9.2.1 Data Elements

sect_cb[g][i] Spectrum Huffman codebook used for section i in group g (see
subclause 6.3, Table 17).

sect_len_incr Used to compute the length of a section, measures number of
scalefactor bands from start of section. The length of
sect_len_incr is 3 bits if window_sequence is
EIGHT_SHORT_SEQUENCE and 5 bits otherwise (see
subclause 6.3, Table 17).

global_gain Global gain of the quantized spectrum, sent as unsigned integer
value (see subclause 6.3, Table 16).

hcod_sf[] Huffman codeword from the Huffman code Table used for coding
of scalefactors (see subclause 6.3, Table 18).

hcod[sect_cb[g][i]][w][x][y][z] Huffman codeword from codebook sect_cb[g][i] that encodes
the next 4-tuple (w, x, y, z) of spectral coefficients, where w, x, y,
z are quantized spectral coefficients. Within an n-tuple, w, x, y, z
are ordered as described in subclause 8.3.5. so that
x_quant[group][win][sfb][bin] = w, x_quant[group][win][sfb][bin+1]
= x, x_quant[group][win][sfb][bin+2] = y and
x_quant[group][win][sfb][bin+3] = z. N-tuples progress from low to
high frequency within the current section (see subclause 6.3,
Table 20).

hcod[sect_cb[g][i]][y][z] Huffman codeword from codebook sect_cb[g][i] that encodes
the next 2-tuple (y, z) of spectral coefficients, where y, z are
quantized spectral coefficients. Within an n-tuple, y, z are
ordered as described in subclause 8.3.5 so that
x_quant[group][win][sfb][bin] = y and
x_quant[group][win][sfb][bin+1] = z. N-tuples progress from low to
high frequency within the current section (see subclause 6.3,
Table 20).

ISO/IEC 13818-7:2006(E)

72 © ISO/IEC 2006 – All rights reserved

quad_sign_bits Sign bits for non-zero coefficients in the spectral 4-tuple. A ‘1’
indicates a negative coefficient, a ‘0’ a positive one. Bits
associated with lower frequency coefficients are sent first (see
subclause 6.3, Table 20).

pair_sign_bits Sign bits for non-zero coefficients in the spectral 2-tuple. A ‘1’
indicates a negative coefficient, a ‘0’ a positive one. Bits
associated with lower frequency coefficients are sent first (see
subclause 6.3, Table 20).

hcod_esc_y Escape sequence for quantized spectral coefficient y of 2-tuple
(y,z) associated with the preceeding Huffman codeword (see
subclause 6.3, Table 20).

hcod_esc_z Escape sequence for quantized spectral coefficient z of 2-tuple
(y,z) associated with the preceeding Huffman codeword (see
subclause 6.3, Table 20).

pulse_data_present 1 bit indicating whether the pulse escape is used (1) or not (0)
(see subclause 6.3, Table 21). Note that pulse_data_present
must be 0 for an EIGHT_SHORT_SEQUENCE.

number_pulse 2 bits indicating how many pulse escapes are used. The number
of pulse escapes is from 1 to 4 (see subclause 6.3, Table 21).

pulse_start_sfb 6 bits indicating the index of the lowest scalefactor band where
the pulse escape is achieved (see subclause 6.3, Table 21).

pulse_offset[i] 5 bits indicating the offset (see subclause 6.3, Table 21).

pulse_amp[i] 4 bits indicating the unsigned magnitude of the pulse (see
subclause 6.3, Table 21).

9.2.2 Help Elements

sect_start[g][i] Offset to first scalefactor band in section i of group g (see

subclause 6.3, Table 17).

sect_end[g][i] Offset to one higher than last scalefactor band in section i of

group g (see subclause 6.3, Table 17).

num_sec[g] Number of sections in group g (see subclause 6.3, Table 17).

escape_flag The value of 16 in the ESC Huffman codebook

escape_prefix The bit sequence of N 1’s

escape_separator One 0 bit

escape_word An N+4 bit unsigned integer word, msb first

escape_sequence The sequence of escape_prefix, escape_separator and
escape_word

escape_code 2^(N+4) + escape_word

x_quant[g][win][sfb][bin] Huffman decoded value for group g, window win, scalefactor
band sfb, coefficient bin

spec[w][k] De-interleaved spectrum. w ranges from 0 to num_windows-1
and k ranges from 0 to swb_offset[num_swb]-1.

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 73

The noiseless coding tool requires these constants (see subclause 6.3, spectral_data()).

ZERO_HCB 0

FIRST_PAIR_HCB 5

ESC_HCB 11

QUAD_LEN 4

PAIR_LEN 2

INTENSITY_HCB2 14

INTENSITY_HCB 15

ESC_FLAG 16

9.3 Decoding Process

Four-tuples or 2-tuples of quantized spectral coefficients are Huffman coded and transmitted starting from the
lowest-frequency coefficient and progressing to the highest-frequency coefficient. For the case of multiple
windows per block (EIGHT_SHORT_SEQUENCE), the grouped and interleaved set of spectral coefficients is
treated as a single set of coefficients that progress from low to high. The set of coefficients may need to be
de-interleaved after they are decoded (see subclause 8.3.5). Coefficients are stored in the array
x_quant[g][win][sfb][bin], and the order of transmission of the Huffman codewords is such that when they are
decoded in the order received and stored in the array, bin is the most rapidly incrementing index and g is the
most slowly incrementing index. Within a codeword, for those associated with spectral four-tuples, the order of
decoding is w, x, y, z; for codewords associated with spectral two-tuples, the order of decoding is y, z. The set
of coefficients is divided into sections and the sectioning information is transmitted starting from the lowest
frequency section and progressing to the highest frequency section. The spectral information for sections that
are coded with the “zero” codebook is not sent as this spectral information is zero. Similarly, spectral
information for sections coded with the “intensity” codebooks is not sent. The spectral information for all
scalefactor bands at and above max_sfb, for which there is no section data, is zero.

There is a single differential scalefactor codebook which represents a range of values as shown in Table 58.
The differential scalefactor codebook is shown in Table A.1 . There are eleven Huffman codebooks for the
spectral data, as shown in Table 59. The codebooks are shown in Table A.2 through Table A.12 . There are
three other “codebooks” above and beyond the actual Huffman codebooks, specifically the “zero” codebook,
indicating that neither scalefactors nor quantized data will be transmitted, and the “intensity” codebooks
indicating that this individual channel is part of a channel pair, and that the data that would normally be
scalefactors is instead steering data for intensity stereo. In this case, no quantized spectral data are
transmitted. Codebook indices 12 and 13 are reserved.

The spectrum Huffman codebooks encode 2- or 4-tuples of signed or unsigned quantized spectral
coefficients, as shown in Table 59. This Table also indicates the largest absolute value (LAV) able to be
encoded by each codebook and defines a boolean helper variable array, unsigned_cb[], that is 1 if the
codebook is unsigned and 0 if signed.

The result of Huffman decoding each differential scalefactor codeword is the codeword index, listed in the first
column of Table A.1 . This is translated to the desired differential scalefactor by adding index_offset to the

index. Index_offset has a value of −60, as shown in Table 58. Likewise, the result of Huffman decoding each
spectrum n-tuple is the codeword index, listed in the first column of Table A.2 through Table A.12 . This index
is translated to the n-tuple spectral values as specified in the following pseudo C-code:

unsigned = Boolean value unsigned_cb[i], listed in second column of Table 59.

dim = Dimension of codebook, listed in the third column of Table 59.

lav = LAV, listed in the fourth column of Table 59.

ISO/IEC 13818-7:2006(E)

74 © ISO/IEC 2006 – All rights reserved

idx = codeword index

if (unsigned) {
 mod = lav + 1;
 off = 0;
}
else {
 mod = 2*lav + 1;
 off = lav;
}

if (dim == 4) {
 w = INT(idx/(mod*mod*mod)) - off;
 idx -= (w+off)*(mod*mod*mod)
 x = INT(idx/(mod*mod)) - off;
 idx -= (x+off)*(mod*mod)
 y = INT(idx/mod) - off;
 idx -= (y+off)*mod
 z = idx - off;
}
else {
 y = INT(idx/mod) - off;
 idx -= (y+off)*mod
 z = idx - off;
}

If the Huffman codebook represents signed values, the decoding of the quantized spectral n-tuple is complete
after Huffman decoding and translation of codeword index to quantized spectral coefficients. If the codebook
represents unsigned values then the sign bits associated with non-zero coefficients immediately follow the
Huffman codeword, with a ‘1’ indicating a negative coefficient and a ‘0’ indicating a positive one. For example,
if a Huffman codeword from codebook 7

 hcod[7][y][z]

has been parsed, then immediately following this in the bitstream is

 pair_sign_bits

which is a variable length field of 0 to 2 bits. It can be parsed directly from the bitstream as

 if (y != 0)
 if (one_sign_bit == 1)
 y = -y ;
 if (z != 0)
 if (one_sign_bit == 1)
 z = -z;
where one_sign_bit is the next bit in the bitstream and pair_sign_bits is the concatenation of the
one_sign_bit fields.

The ESC codebook is a special case. It represents values from 0 to 16 inclusive, but values from 0 to 15
encode actual data values, and the value16 is an escape_flag that signals the presence of hcod_esc_y or
hcod_esc_z, either of which will be denoted as an escape_sequence. This escape_sequence permits
quantized spectral elements of LAV>15 to be encoded. It consists of an escape_prefix of N 1’s, followed by an
escape_separator of one zero, followed by an escape_word of N+4 bits representing an unsigned integer
value. The escape_sequence has a decoded value of 2^(N+4)+escape_word. The desired quantized spectral
coefficient is then the sign indicated by the pair_sign_bits applied to the value of the escape_sequence. In
other words, an escape_sequence of 00000 would decode as 16, an escape_sequence of 01111 as 31, an
escape_sequence of 1000000 as 32, one of 1011111 as 63, and so on. Note that restrictions in
subclause 10.3 dictate that the length of the escape_sequence is always less than 22 bits. For escape
Huffman codewords the ordering of data elements is Huffman codeword followed by 0 to 2 sign bits followed
by 0 to 2 escape sequences.

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 75

When pulse_data_present is 1 (the pulse escape is used), one or several quantized coefficients have been
replaced by coefficients with smaller amplitudes in the encoder. The number of coefficients replaced is
indicated by number_pulse. In reconstructing the quantized spectral coefficients x_quant this replacement is
compensated by adding pulse_amp to or subtracting pulse_amp from the previously decoded coefficients
whose frequency indices are indicated by pulse_start_sfb and pulse_offset. Note that the pulse escape
method is illegal for a block whose window_sequence is EIGHT_SHORT_SEQUENCE. The decoding
process is specified in the following pseudo-C code:

if (pulse_data_present) {
 g = 0;
 win = 0;
 k = swb_offset[pulse_start_sfb];
 for (j = 0; j < number_pulse+1; j++) {
 k += pulse_offset[j];

 /* translate_pulse_parameters(); */
 for (sfb = pulse_start_sfb; sfb < num_swb; sfb++) {
 if(k < swb_offset[sfb+1]) {
 bin = k - swb_offset[sfb] ;
 break;
 }
 }

 /* restore coefficients */
 if (x_quant[g][win][sfb][bin] > 0)
 x_quant[g][win][sfb][bin] += pulse_amp[j];
 else
 x_quant[g][win][sfb][bin] -= pulse_amp[j];
 }
}

Several decoder tools (TNS, filterbank) access the spectral coefficients in a non-interleaved fashion, i.e. all
spectral coefficients are ordered according to window number and frequency within a window. This is
indicated by using the notation spec[w][k] rather than x_quant[g][w][sfb][bin].

The following pseudo C-code indicates the correspondence between the four-dimensional, or interleaved,
structure of array x_quant[][][][] and the two-dimensional, or de-interleaved, structure of array spec[][]. In
the latter array the first index increments over the individual windows in the window sequence, and the second
index increments over the spectral coefficients that correspond to each window, where the coefficients
progress linearly from low to high frequency.

quant_to_spec() {
 k = 0;
 for (g = 0; g < num_window_groups; g++) {
 j = 0;
 for (sfb = 0; sfb < num_swb; sfb ++) {
 width = swb_offset[sfb+1] - swb_offset[sfb];
 for (win = 0; win < window_group_length[g]; win++) {
 for (bin = 0; bin < width; bin++) {
 spec[win+k][bin+j] = x_quant[g][win][sfb][bin] ;
 }
 }
 j += width;
 }
 k += window_group_length[g];
 }
}

ISO/IEC 13818-7:2006(E)

76 © ISO/IEC 2006 – All rights reserved

9.4 Tables

Table 58 — Scalefactor Huffman codebook parameters

Codebook
Number

Dimension of
Codebook

index_offset Range of values Codebook listed in

0 1 -60 -60 to +60 Table A.1

Table 59 — Spectrum Huffman codebooks parameters

Codebook Number, i unsigned_cb[i] Dimension of
Codebook

LAV for codebook Codebook listed
in

0 - - 0 -

1 0 4 1 Table A.2

2 0 4 1 Table A.3

3 1 4 2 Table A.4

4 1 4 2 Table A.5

5 0 2 4 Table A.6

6 0 2 4 Table A.7

7 1 2 7 Table A.8

8 1 2 7 Table A.9

9 1 2 12 Table A.10

10 1 2 12 Table A.11

11 1 2 (16) ESC Table A.12

12 - - (reserved) -

13 - - (reserved) -

14 - - intensity out-of-phase -

15 - - intensity in-phase -

10 Quantization

10.1 Tool Description

For quantization of the spectral coefficients in the encoder a non uniform quantizer is used. Therefore the
decoder must perform the inverse non uniform quantization after the Huffman decoding of the scalefactors
(see clause 9 and 11) and spectral data (see clause 9).

10.2 Definitions

10.2.1 Help Elements

x_quant[g][win][sfb][bin] quantized spectral coefficient for group g, window win,
scalefactor band sfb, coefficient bin.

x_invquant[g][win][sfb][bin] spectral coefficient for group g, window win, scalefactor band sfb,
coefficient bin after inverse quantization.

10.3 Decoding Process

The inverse quantization is described by the following formula:

kquantxquantxSigninvquantx ∀⋅= 3

4

)(_

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 77

The maximum allowed absolute amplitude for x_quant is 8191. The inverse quantization is applied as follows:

for (g = 0; g < num_window_groups; g++) {
 for (sfb = 0; sfb < max_sfb; sfb++) {
 width = (swb_offset [sfb+1] - swb_offset [sfb]);
 for (win = 0; win < window_group_len[g]; win++) {;
 for (bin = 0; bin < width; bin++) {
 x_invquant[g][win][sfb][bin] = sign(x_quant[g][win][sfb][bin]) *
 abs(x_quant[g][win][sfb][bin]) ^(4/3);
 }
 }
 }
}

11 Scalefactors

11.1 Tool Description

The basic method to adjust the quantization noise in the frequency domain is the noise shaping using
scalefactors. For this purpose the spectrum is divided in several groups of spectral coefficients called
scalefactor bands which share one scalefactor (see subclause 8.3.4). A scalefactor represents a gain value
which is used to change the amplitude of all spectral coefficients in that scalefactor band. This mechanism is
used to change the allocation of the quantization noise in the spectral domain generated by the non uniform
quantizer.

For window_sequences which contain SHORT_WINDOWs grouping can be applied, i.e. a specified number of
consecutive SHORT_WINDOWs may have only one set of scalefactors. Each scalefactor is then applied to a
group of scalefactor bands corresponding in frequency (see subclause 8.3.4).

In this tool the scalefactors are applied to the inverse quantized coefficients to reconstruct the spectral values.

11.2 Definitions

11.2.1 Data Functions

scale_factor_data() Part of bitstream which contains the differential coded
scalefactors (see Table 18)

11.2.2 Data Elements

global_gain An 8-bit unsigned integer value representing the value of the first
scalefactor. It is also the start value for the following differential
coded scalefactors (see Table 16)

hcod_sf[] Huffman codeword from the Huffman code Table used for coding
of scalefactors, see Table 18 and subclause 9.2

11.2.3 Help Elements

dpcm_sf[g][sfb] Differential coded scalefactor of group g, scalefactor band sfb.

x_rescal[] Rescaled spectral coefficients

sf[g][sfb] Array for scalefactors of each group

get_scale_factor_gain() Function that returns the gain value corresponding to a
scalefactor

ISO/IEC 13818-7:2006(E)

78 © ISO/IEC 2006 – All rights reserved

11.3 Decoding Process

11.3.1 Scalefactor Bands

Scalefactors are used to shape the quantization noise in the spectral domain. For this purpose, the spectrum
is divided into several scalefactor bands (see subclause 8.3.4). Each scalefactor band has a scalefactor,
which represents a certain gain value which has to be applied to all spectral coefficients in this scalefactor
band. In case of EIGHT_SHORT_SEQUENCE a scalefactor band may contain multiple scalefactor window
bands of consecutive SHORT_WINDOWs (see subclause 8.3.4 and 8.3.5).

11.3.2 Decoding of Scalefactors

For all scalefactors the difference to the preceeding value is coded using the Huffman code book given in
Table A.1 . See clause 9 for a detailed description of the Huffman decoding process. The start value is given
explicitly as a 8 bit PCM in the data element global_gain. A scalefactor is not transmitted for scalefactor
bands which are coded with the Huffman codebook ZERO_HCB. If the Huffman codebook for a scalefactor
band is coded with INTENSITY_HCB or INTENSITY_HCB2, the scalefactor is used for intensity stereo (see
clause 9 and subclause 12.2). In that case a normal scalefactor does not exist (but is initialized to zero to have
a valid entry in the array).

The following pseudo code describes how to decode the scalefactors sf[g][sfb]:

last_sf = global_gain;
for (g = 0; g < num_window_groups; g++) {
 for (sfb = 0; sfb < max_sfb; sfb++) {
 if (sfb_cb[g][sfb] != ZERO_HCB && sfb_cb[g][sfb] != INTENSITY_HCB
 && sfb_cb[g][sfb] != INTENSITY_HCB2) {
 dpcm_sf = decode_huffman() - index_offset; /* see clause 9*/
 sf[g][sfb] = dpcm_sf + last_sf;
 last_sf = sf[g][sfb];
 }
 else {
 sf[g][sfb] = 0;
 }
 }
}

Note that scalefactors, sf[g][sfb], must be within the range of zero to 255, both inclusive.

11.3.3 Applying Scalefactors

The spectral coefficients of all scalefactor bands which correspond to a scalefactor have to be rescaled
according to their scalefactor. In case of a window sequence that contains groups of short windows all
coefficients in grouped scalefactor window bands have to be scaled using the same scalefactor.

In case of window_sequences with only one window, the scalefactor bands and their corresponding
coefficients are in spectral ascending order. In case of EIGHT_SHORT_SEQUENCE and grouping the
spectral coefficients of grouped short windows are interleaved by scalefactor window bands. See
subclause 8.3.5 for more detailed information.

The rescaling operation is done according to the following pseudo code:

for (g = 0; g < num_window_groups; g++) {
 for (sfb = 0; sfb < max_sfb; sfb++) {
 width = (swb_offset [sfb+1] - swb_offset [sfb]);
 for (win = 0; win < window_group_len[g]; win++) {;
 gain = get_scale_factor_gain(sf[g][sfb]);
 for (k = 0; k < width; k++) {
 x_rescal[g][window][sfb][k] =
 x_invquant[g][window][sfb][k] * gain;
 }

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 79

 }
 }
}
The function get_scale_factor_gain(sf[g][sfb]) returns the gain factor that corresponds to a scalefactor. The

return value follows the equation:

)_]][[(25.02 OFFSETSFsfbgsfgain −⋅=

The constant SF_OFFSET must be set to 100.

The following pseudo code describes this operation:

get_scale_factor_gain(sf[g][sfb]) {
 SF_OFFSET = 100;
 gain = 2^(0.25 * (sf[g][sfb] - SF_OFFSET));
 return (gain);
}

12 Joint Coding

12.1 M/S Stereo

12.1.1 Tool Description

The M/S joint channel coding operates on channel pairs. Channels are most often paired such that they have
symmetric presentation relative to the listener, such as left/right or left surround/right surround. The first
channel in the pair is denoted “left” and the second “right.” On a per-spectral-coefficient basis, the vector
formed by the left and right channel signals is reconstructed or de-matrixed by either the identity matrix

 ⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
r

l

r

l

10

01

or the inverse M/S matrix

 ⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡
s

m

r

l

11

11

The decision on which matrix to use is done on a scalefactor band by scalefactor band basis as indicated by
the ms_used flags. M/S joint channel coding can only be used if common_window is ‘1’ (see subclause 8.3.1).

12.1.2 Definitions

12.1.2.1 Data Elements

ms_mask_present This two bit field indicates that the MS mask is

 00 All zeros

 01 A mask of max_sfb bands of ms_used follows this field

 10 All ones

 11 Reserved

 (see subclause 6.3, Table 14)

ms_used[g][sfb] One-bit flag per scalefactor band indicating that M/S coding is
being used in windowgroup g and scalefactor band sfb (see
subclause 6.3, Table 14).

ISO/IEC 13818-7:2006(E)

80 © ISO/IEC 2006 – All rights reserved

12.1.2.2 Help Elements

l_spec[] Array containing the left channel spectrum of the respective

channel pair.

r_spec[] Array containing the right channel spectrum of the respective

channel pair.

is_intensity(g,sfb) Function returning the intensity status, defined in 12.2.3

12.1.3 Decoding Process

Reconstruct the spectral coefficients of the first (“left”) and second (“right”) channel as specified by the
mask_present and the ms_used[][] flags as follows:

if (mask_present >= 1) {
 for (g = 0; g < num_window_groups; g++) {
 for (b = 0; b < window_group_length[g]; b++) {
 for (sfb = 0; sfb < max_sfb; sfb++) {
 if ((ms_used[g][sfb] || mask_present == 2) && !is_intensity(g,sfb)) {
 for (i = 0; i < swb_offset[sfb+1]-swb_offset[sfb]; i++) {
 tmp = l_spec[g][b][sfb][i] - r_spec[g][b][sfb][i];
 l_spec[g][b][sfb][i] = l_spec[g][b][sfb][i] + r_spec[g][b][sfb][i];
 r_spec[g][b][sfb][i] = tmp;
 }
 }
 }
 }
 }
}

Please note that ms_used[][] is also used in the context of intensity stereo coding. If intensity stereo coding is
on for a particular scalefactor band, no M/S stereo decoding is carried out.

12.2 Intensity Stereo

12.2.1 Tool Description

This tool is used to implement joint intensity stereo coding between both channels of a channel pair. Thus,
both channel outputs are derived from a single set of spectral coefficients after the inverse quantization
process. This is done selectively on a scalefactor band basis when intensity stereo is flagged as active.

12.2.2 Definitions

12.2.2.1 Data Elements

hcod_sf[] Huffman codeword from the Huffman code Table used for coding
of scalefactors (see subclause 9.2)

12.2.2.2 Help Elements

dpcm_is_position[][] Differentially encoded intensity stereo position

is_position[group][sfb] Intensity stereo position for each group and scalefactor band

l_spec[] Array containing the left channel spectrum of the respective

channel pair

r_spec[] Array containing the right channel spectrum of the respective
channel pair

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 81

12.2.3 Decoding Process

The use of intensity stereo coding is signaled by the use of the pseudo codebooks INTENSITY_HCB and
INTENSITY_HCB2 (15 and 14) only in the right channel of a channel_pair_elelement() having a common
ics_info() (common_window == 1). INTENSITY_HCB and INTENSITY_HCB2 signal in-phase and out-of-
phase intensity stereo coding, respectively.

In addition, the phase relationship of the intensity stereo coding can be reversed by means of the ms_used
field: Because M/S stereo coding and intensity stereo coding are mutually exclusive for a particular scalefactor
band and group, the primary phase relationship indicated by the Huffman code tables is changed from in-
phase to out-of-phase or vice versa if the corresponding ms_used bit is set for the respective band.

The directional information for the intensity stereo decoding is represented by an "intensity stereo position"
value indicating the relation between left and right channel scaling. If intensity stereo coding is active for a
particular group and scalefactor band, an intensity stereo position value is transmitted instead of the
scalefactor of the right channel.

Intensity positions are coded just like scalefactors, i.e. by Huffman coding of differential values with two
differences:

• there is no first value that is sent as PCM. Instead, the differential decoding is started assuming the last
intensity stereo position value to be zero.

• Differential decoding is done separately between scalefactors and intensity stereo positions. In other
words, the scalefactor decoder ignores interposed intensity stereo position values and vice versa (see
subclause 11.3.2)

The same codebook is used for coding intensity stereo positions as for scalefactors.

Two pseudo functions are defined for use in intensity stereo decoding:

function is_intensity(group,sfb) {
 +1 for window groups / scalefactor bands with right channel codebook
 sfb_cb[group][sfb] == INTENSITY_HCB
 -1 for window groups / scalefactor bands with right channel codebook
 sfb_cb[group][sfb] == INTENSITY_HCB2
 0 otherwise
 }

function invert_intensity(group,sfb) {
 1-2*ms_used[group][sfb] if (ms_mask_present == 1)
 +1 otherwise
 }

The intensity stereo decoding for one channel pair is defined by the following pseudo code:

p = 0;
for (g = 0; g < num_window_groups; g++) {

 /* Decode intensity positions for this group */
 for (sfb = 0; sfb < max_sfb; sfb++)
 if (is_intensity(g,sfb))
 is_position[g][sfb] = p += dpcm_is_position[g][sfb];

 /* Do intensity stereo decoding */
 for (b = 0; b < window_group_length[g]; b++) {
 for (sfb = 0; sfb < max_sfb; sfb++) {
 if (is_intensity(g,sfb)) {

 scale = is_intensity(g,sfb) * invert_intensity(g,sfb) *
 0.5^(0.25*is_position[g][sfb]);
 /* Scale from left to right channel, do not touch left channel */
 for (i = 0; i < swb_offset[sfb+1]-swb_offset[sfb]; i++)

ISO/IEC 13818-7:2006(E)

82 © ISO/IEC 2006 – All rights reserved

 r_spec[g][b][sfb][i] = scale * l_spec[g][b][sfb][i];

 }

 }
 }

}

12.2.4 Integration with Intra Channel Prediction Tool

For scalefactor bands coded in intensity stereo the corresponding predictors in the right channel are switched
to "off" thus effectively overriding the status specified by the prediction_used mask. The update of these
predictors is done by feeding the intensity stereo decoded spectral values of the right channel as the "last
quantized value" xrec(n-1). These values result from the scaling process from left to right channel as

described in the pseudo code.

12.3 Coupling Channel

12.3.1 Tool Description

Coupling channel elements provide two functionalities: First, coupling channels may be used to implement
generalized intensity stereo coding where channel spectra can be shared across channel boundaries.
Second, coupling channels may be used to dynamically perform a downmix of one sound object into the
stereo image.

Note that this tool includes certain profile dependent parameters (see subclause 7.1).

12.3.2 Definitions

12.3.2.1 Data Elements

ind_sw_cce_flag One bit indicating whether the coupled target syntax element is
an independently switched (1) or a dependently switched (0)
CCE (see subclause 6.3, Table 22).

num_coupled_elements Number of coupled target channels is equal to
num_coupled_elements+1. The minimum value is 0 indicating 1
coupled target channel (see subclause 6.3, Table 22).

cc_target_is_cpe One bit indicating if the coupled target syntax element is a CPE
(1) or a SCE (0) (see subclause 6.3, Table 22).

cc_target_tag_select Four bit field specifying the element_instance_tag of the coupled
target syntax element (see subclause 6.3, Table 22).

cc_l One bit indicating that a list of gain_element values is applied to
the left channel of a channel pair (see subclause 6.3, Table 22).

cc_r One bit indicating that a list of gain_element values is applied to
the right channel of a channel pair (see subclause 6.3, Table 22).

cc_domain One bit indicating whether the coupling is performed before (0) or
after (1) the TNS decoding of the coupled target channels (see
subclause 6.3, Table 22).

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 83

gain_element_sign One bit indicating if the transmitted gain_element values contain
information about in-phase / out-of-phase coupling (1) or not (0)
(see subclause 6.3, Table 22).

gain_element_scale Determines the amplitude resolution cc_scale of the scaling
operation according to Table 61 (see subclause 6.3, Table 22).

common_gain_element_present[c] One bit indicating whether Huffman coded
common_gain_element values are transmitted (1) or whether
Huffman coded differential gain_elements are sent (0) (see
subclause 6.3, Table 22).

12.3.2.2 Help Elements

dpcm_gain_element[][] Differentially encoded gain element.

gain_element[group][sfb] Gain element for each group and scalefactor band.

common_gain_element[] Gain element that is used for all window groups and scalefactor
bands of one coupling target channel.

spectrum_m(idx, domain) Pointer to the spectral data associated with the
single_channel_element() with index idx. Depending on the value
of "domain", the spectral coefficients before (0) or after (1) TNS
decoding are pointed to.

spectrum_l(idx, domain) Pointer to the spectral data associated with the left channel of the
channel_pair_element() with index idx. Depending on the value
of "domain", the spectral coefficients before (0) or after (1) TNS
decoding are pointed to.

spectrum_r(idx, domain) Pointer to the spectral data associated with the right channel of
the channel_pair_element() with index idx. Depending on the
value of "domain", the spectral coefficients before (0) or after (1)
TNS decoding are pointed to.

12.3.3 Decoding Process

The coupling channel is based on an embedded single_channel_element() which is combined with some
dedicated fields to accomodate its special purpose.

The coupled target syntax elements (SCEs or CPEs) are addressed using two syntax elements. First, the
cc_target_is_cpe field selects whether a SCE or CPE is addressed. Second, a cc_target_tag_select field
selects the instance_tag of the SCE/CPE.

The scaling operation involved in channel coupling is defined by gain_element values which describe the
applicable gain factor and sign. In accordance with the coding procedures for scalefactors and intensity stereo
positions, gain_element values are differentially encoded using the Huffman Table for scalefactors. Similarly,
the decoded gain factors for coupling relate to window groups of spectral coefficients.

Independently switched CCEs vs. dependently switched CCEs

There are two kinds of CCEs. They are “independently switched” and “dependently switched” CCEs. An
independently switched CCE is a CCE in which the window state (i.e. window_sequence and window_shape)
of the CCE does not have to match that of any of the SCE or CPE channels that the CCE is coupled onto
(target channels). This has several important implications:

• First, it is required that an independently switched CCE must only use the common_gain element,
not a list of gain_elements.

ISO/IEC 13818-7:2006(E)

84 © ISO/IEC 2006 – All rights reserved

• Second, the independently switched CCE must be decoded all the way to the time domain (i.e.
including the synthesis filterbank) before it is scaled and added onto the various SCE and CPE
channels that it is coupled to in the case that window state does not match.

A dependently switched CCE, on the other hand, must have a window state that matches all of the target SCE
and CPE channels that it is coupled onto as determined by the list of cc_l and cc_r elements. In this case, the
CCE only needs to be decoded as far as the frequency domain and then scaled as directed by the gain list
before it is added to the target SCE or CPE channels.

The following pseudo code in function decode_ coupling_channel() defines the decoding operation for a
dependently switched coupling channel element. First the spectral coefficients of the embedded
single_channel_element() are decoded into an internal buffer. Since the gain elements for the first coupled
target (list_index == 0) are not transmitted, all gain_element values associated with this target are assumed to
be 0, i.e. the coupling channel is added to the coupled target channel in its natural scaling. Otherwise the
spectral coefficients are scaled and added to the coefficients of the coupled target channels using the
appropriate list of gain_element values.

An independently switched CCE is decoded like a dependently switched CCE having only
common_gain_element’s. However, the resulting scaled spectrum is transformed back into its time
representation and then coupled in the time domain.

Please note that the gain_element lists may be shared between the left and the right channel of a target
channel pair element. This is signalled by both cc_l and cc_r being zero as indicated in the Table below:

Table 60 — Sharing of gain_element lists

cc_l,
cc_r

shared gain list
present

left gain list
present

right gain list
present

0, 0 yes no no

0, 1 no no yes

1, 0 no yes no

1, 1 no yes yes

decode_coupling_channel()
{
 - decode spectral coefficients of embedded single_channel_element
 into buffer "cc_spectrum[]".

 /* Couple spectral coefficients onto target channels */
 list_index = 0;
 for (c = 0; c < num_coupled_elements+1; c++) {
 if (!cc_target_is_cpe[c]) {
 couple_channel(cc_spectrum,
 spectrum_m(cc_target_tag_select[c],
 cc_domain), list_index++);
 }
 if (cc_target_is_cpe[c]) {
 if (!cc_l[c] && !cc_r[c]) {
 couple_channel(cc_spectrum,
 spectrum_l(cc_target_tag_select[c],
 cc_domain), list_index);
 couple_channel(cc_spectrum,
 spectrum_r(cc_target_tag_select[c],
 cc_domain), list_index++);
 }
 if (cc_l[c]) {
 couple_channel(cc_spectrum,
 spectrum_l(cc_target_tag_select[c],
 cc_domain), list_index++));
 }

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 85

 if (cc_r[c]) {
 couple_channel(cc_spectrum,
 spectrum_r(cc_target_tag_select[c],
 cc_domain), list_index++));
 }
 }
 }
}

couple_channel(source_spectrum[], dest_spectrum[], gain_list_index)
{
 idx = gain_list_index;
 a = 0;
 cc_scale = cc_scale_table[gain_element_scale];
 for (g = 0; g < num_window_groups; g++) {

 /* Decode coupling gain elements for this group */
 if (common_gain_element_present[idx]) {

 for (sfb = 0; sfb < max_sfb; sfb++) {
 cc_sign[idx][g][sfb] = 1;
 gain_element[idx][g][sfb] = common_gain_element[idx];
 }
 }
 else {
 for (sfb = 0; sfb < max_sfb; sfb++) {
 if (sfb_cb[g][sfb] == ZERO_HCB)
 continue;

 if (gain_element_sign) {
 cc_sign[idx][g][sfb] = 1 - 2*(dpcm_gain_element[idx][g][sfb] & 0x1);
 gain_element[idx][g][sfb] = a += (dpcm_gain_element[idx][g][sfb] >>
1);
 }
 else {
 cc_sign[idx][g][sfb] = 1;
 gain_element[idx][g][sfb] = a += dpcm_gain_element[idx][g][sfb];
 }
 }

 }
 /* Do coupling onto target channels */
 for (b = 0; b < window_group_length[b]; b++) {
 for (sfb = 0; sfb < max_sfb; sfb++) {

 if (sfb_cb[g][sfb] != ZERO_HCB) {
 cc_gain[idx][g][sfb] = cc_sign[idx][g][sfb] *
cc_scale^gain_element[idx][g][sfb];
 for (i = 0; i<swb_offset[sfb+1]-swb_offset[sfb]; i++)
 dest_spectrum[g][b][sfb][i] += cc_gain[idx][g][sfb] *
 source_spectrum[g][b][sfb][i];

 }
 }
 }
 }
}

Note: The array sfb_cb represents the codebook data respect to the CCE’s embedded single_channel_element() (not the coupled target

channel).

ISO/IEC 13818-7:2006(E)

86 © ISO/IEC 2006 – All rights reserved

12.3.4 Tables

Table 61 — Scaling resolution for channel coupling (cc_scale_table)

Value of "gain_element_scale" Amplitude Resolution "cc_scale" Stepsize [dB]

0 2^(1/8) 0.75

1 2^(1/4) 1.50

2 2^(1/2) 3.00

3 2^1 6.00

13 Prediction

13.1 Tool Description

Prediction is used for an improved redundancy reduction and is especially effective in case of more or less
stationary parts of a signal which belong to the most demanding parts in terms of required bitrate. Prediction
can be applied to every channel using an intra channel (or mono) predictor which exploits the auto-correlation
between the spectral components of consecutive frames. Because a window_sequence of type
EIGHT_SHORT_SEQUENCE indicates signal changes, i.e. non-stationary signal characteristics, prediction is
only used if window_sequence is of type ONLY_LONG_SEQUENCE, LONG_START_SEQUENCE or
LONG_STOP_SEQUENCE. The use of the prediction tool is profile dependent. See clause 7 for detailed
information.

For each channel prediction is applied to the spectral components resulting from the spectral decomposition of
the filterbank. For each spectral component up to limit specified by PRED_SFB_MAX, there is one
corresponding predictor resulting in a bank of predictors, where each predictor exploits the auto-correlation
between the spectral component values of consecutive frames.

The overall coding structure using a filterbank with high spectral resolution implies the use of backward
adaptive predictors to achieve high coding efficiency. In this case, the predictor coefficients are calculated
from preceding quantized spectral components in the encoder as well as in the decoder and no additional side
information is needed for the transmission of predictor coefficients - as would be required for forward adaptive
predictors. A second order backward-adaptive lattice structure predictor is used for each spectral component,
so that each predictor is working on the spectral component values of the two preceding frames. The predictor
parameters are adapted to the current signal statistics on a frame by frame base, using an LMS based
adaptation algorithm. If prediction is activated, the quantizer is fed with a prediction error instead of the original
spectral component, resulting in a coding gain.

In order to keep storage requirements to a minimum, predictor state variables are quantized prior to storage.

13.2 Definitions

13.2.1 Data Elements

predictor_data_present 1 bit indicating whether prediction is used in current frame (1) or
not (0) (always present for ONLY_LONG_SEQUENCE,
LONG_START_SEQUENCE and LONG_STOP_SEQUENCE,
see subclause 6.3, Table 15).

predictor_reset 1 bit indicating whether predictor reset is applied in current frame
(1) or not (0) (only present if predictor_data_present flag is set,
see subclause 6.3, Table 15).

predictor_reset_group_number 5 bit number specifying the reset group to be reset in current
frame if predictor reset is enabled (only present if
predictor_reset flag is set, see subclause 6.3, Table 15).

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 87

prediction_used 1 bit for each scalefactor band (sfb) where prediction can be
used indicating whether prediction is switched on (1) / off (0) in
that sfb. If max_sfb is less than PRED_SFB_MAX then for i
greater than or equal to max_sfb, prediction_used[i] is not
transmitted and therfore is set to off (0) (only present if
predictor_data_present flag is set, see subclause 6.3,
Table 15).

The following Table specifies the upper limit of scalefactor bands up to which prediction can be used:

Table 62 — Upper spectral limit for prediction

Sampling Frequency
(Hz)

Pred_SFB_MAX Number of Predictors Maximum Frequency using
Prediction (Hz)

96000 33 512 24000.00

88200 33 512 22050.00

64000 38 664 20750.00

48000 40 672 15750.00

44100 40 672 14470.31

32000 40 672 10500.00

24000 41 652 7640.63

22050 41 652 7019.82

16000 37 664 5187.50

12000 37 664 3890.63

11025 37 664 3574.51

8000 34 664 2593.75

This means that at 48 kHz sampling rate prediction can be used in scalefactor bands 0 through 39. According
to Table 46 these 40 scalefactor bands include the MDCT lines 0 through 671, hence resulting in max. 672
predictors.

13.3 Decoding Process

For each spectral component up to the limit specified by PRED_SFB_MAX of each channel there is one
predictor. Prediction is controlled on a single_channel_element() or channel_pair_element() basis by the
transmitted side information in a two step approach, first for the whole frame at all and then conditionally for
each scalefactor band individually, see subclause 13.3.1. The predictor coefficients for each predictor are
calculated from preceding reconstructed values of the corresponding spectral component. The details of the
required predictor processing are described in subclause 13.3.2. At the start of the decoding process, all
predictors are initialized. The initialization and a predictor reset mechanism are described in
subclause 13.3.2.4.

13.3.1 Predictor Side Information

The following description is valid for either one single_channel_element() or one channel_pair_element() and
has to be applied to each such element. For each frame the predictor side information has to be extracted
from the bitstream to control the further predictor processing in the decoder. In case of a
single_channel_element() the control information is valid for the predictor bank of the channel associated with
that element. In case of a channel_pair_element() there are the following two possibilities: If
common_window = 1 then there is only one set of the control information which is valid for the two predictor
banks of the two channels associated with that element. If common_window = 0 then there are two sets of
control information, one for each of the two predictor banks of the two channels associated with that element.

If window_sequence is of type ONLY_LONG_SEQUENCE, LONG_START_SEQUENCE or
LONG_STOP_SEQUENCE, the predictor_data_present bit is read. If this bit is not set (0) then prediction is
switched off at all for the current frame and there is no further predictor side information present. In this case
the prediction_used bit for each scalefactor band stored in the decoder has to be set to zero. If the

ISO/IEC 13818-7:2006(E)

88 © ISO/IEC 2006 – All rights reserved

predictor_data_present bit is set (1) then prediction is used for the current frame and the predictor_reset bit
is read which determines whether predictor reset is applied in the current frame (1) or not (0). If
predictor_reset is set then the next 5 bits are read giving a number specifying the group of predictors to be
reset in the current frame, see also subclause 13.3.2.4 for the details. If the predictor_reset is not set then
there is no 5 bit number in the bitstream. Next, the prediction_used bits are read from the bitstream, which
control the use of prediction in each scalefactor band individually, i.e. if the bit is set for a particular scalefactor
band, then prediction is enabled for all spectral components of this scalefactor band and the quantized
prediction error of each spectral component is transmitted instead of the quantized value of the spectral
component. Otherwise, prediction is disabled for this scalefactor band and the quantized values of the spectral
components are transmitted.

13.3.2 Predictor Processing

13.3.2.1 General

The following description is valid for one single predictor and has to be applied to each predictor. A second
order backward adaptive lattice structure predictor is used. Figure 7 shows the corresponding predictor flow
graph on the decoder side. In principle, an estimate xest(n) of the current value of the spectral component x(n)
is calculated from preceding reconstructed values xrec(n-1) and xrec(n-2), stored in the register elements of the
predictor structure, using the predictor coefficients k1(n) and k2(n). This estimate is then added to the
quantized prediction error eq(n) reconstructed from the transmitted data resulting in the reconstructed value
xrec(n) of the current spectral component x(n). Figure 8 shows the block diagram of this reconstruction process
for one single predictor.

Due to the realization in a lattice structure, the predictor consists of two so-called basic elements which are
cascaded. In each element, the part xest,m(n), m=1, 2 of the estimate is calculated according to

)1()()(1,, −⋅⋅= − nrnkbnx mqmmest ,

where

 ()r n ax nq rec, ()0 = ,

r n a r n b k n e nq q q, , ,() (() () ())1 0 1 01= − − ⋅ ⋅

and)()()(,1,, nxnene mestmqmq −= − .

Hence, the overall estimate results to:

)()()(2,1, nxnxnx estestest +=

The constants

 a and b , 1,0 ≤< ba

are attenuation factors which are included in each signal path contributing to the recursivity of the structure for
the purpose of stabilization. By this means, possible oscillations due to transmission errors or drift between
predictor coefficients on the encoder and decoder side due to numerical inaccuracy can be faded out or even
prevented.

In the case of stationary signals and with a = b = 1, the predictor coefficient of element m is calculated by

[]
[] []())1()(

)1()(
2

1,

2

1,2
1

1,1,

−+⋅
−⋅

=
−−

−−

nrEneE

nrneE
k

mqmq

mqmq

m , 2,1=m and)()()(0,0, nxnrne recqq ==

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 89

In order to adapt the coefficients to the current signal properties, the expected values in the above equation
are substituted by time average estimates measured over a limited past signal period. A compromise has to
be chosen between a good convergence against the optimum predictor setting for signal periods with quasi
stationary characteristic and the ability of fast adaptation in case of signal transitions. In this context
algorithms with iterative improvement of the estimates, i.e. from sample to sample, are of special interest.
Here, a "least mean square" (LMS) approach is used and the predictor coefficients are calculated as follows

)(

)(
)1(

nVAR

nCOR
nk

m

m

m =+

with

)()1()1()(1,1, nenrnCORnCOR mqmqmm −− ⋅−+−⋅=α

 ())()1(5.0)1()(2

1,

2

1, nenrnVARnVAR mqmqmm −− +−⋅+−⋅=α

where α is an adaptation time constant which determines the influence of the current sample on the estimate

of the expected values. The value of α is chosen to

 90625.0=α .

The optimum values of the attenuation factors a and b have to be determined as a compromise between high
prediction gain and small fade out time. The chosen values are

 953125.0== ba .

Independent of whether prediction is disabled - either at all or only for a particular scalefactor band - or not, all
the predictors are run all the time in order to always adapt the coefficients to the current signal statistics.

If window_sequence is of type ONLY_LONG_SEQUENCE, LONG_START_SEQUENCE and
LONG_STOP_SEQUENCE only the calculation of the reconstructed value of the quantized spectral
components differs depending on the value of the prediction_used bit:

• If the bit is set (1), then the quantized prediction error reconstructed from the transmitted data is
added to the estimate xest(n) calculated by the predictor resulting in the reconstructed value of the

quantized spectral component, i.e.)()()(nenxnx qestrec +=

• If the bit is not set (0), then the quantized value of the spectral component is reconstructed directly
from the transmitted data.

In case of short blocks, i.e. window_sequence is of type EIGHT_SHORT_SEQUENCE, prediction is always
disabled and a reset is carried out for all predictors in all scalefactor bands, which is equivalent to a
reinitialization, see subclause 13.3.2.4.

For a single_channel_element(), the predictor processing for one frame is done according to the following
pseudo code:

(It is assumed that the reconstructed value y_rec(c) - which is either the reconstructed quantized prediction
error or the reconstructed quantized spectral coefficient - is available from previous processing.)

if (ONLY_LONG_SEQUENCE || LONG_START_SEQUENCE || LONG_STOP_SEQUENCE) {
 for (sfb = 0; sfb < PRED_SFB_MAX; sfb++) {
 fc = swb_offset_long_window[fs_index][sfb];
 lc = swb_offset_long_window[fs_index][sfb+1];
 for (c = fc; c < lc; c++) {
 x_est[c] = predict();
 if (predictor_data_present && prediction_used[sfb])

ISO/IEC 13818-7:2006(E)

90 © ISO/IEC 2006 – All rights reserved

 x_rec[c] = x_est[c] + y_rec[c];
 else
 x_rec[c] = y_rec[c];
 }
 }
}
else {
 reset_all_predictors();
}

In case of channel_pair_element()´s with common_window = 1, the only difference is that the computation of
x_est and x_rec in the inner for loop is done for both channels associated with the channel_pair_element(). In
case of channel_pair_element()´s with common_window = 0, each channel has prediction applied using that
channel’s prediction side information.

13.3.2.2 Quantization in Predictor Calculations

For a given predictor six state variables need to be saved: r0, r1, COR1, COR2, VAR1 and VAR2. These
variables will be saved as truncated IEEE floating-point numbers (i.e. the 16 msb of a float storage word).

The predicted value xest will be rounded to a 16-bit floating point representation (i.e. round to a 7-bit mantissa)
prior to being used in any calculation. The exact rounding algorithm to be used is shown in pseudo-C function
flt_round_inf(). Note that for complexity considerations, round to nearest, infinity is used instead of round to
nearest, even.

The expressions (b / VAR1) and (b / VAR2) will be rounded to a 16-bit floating point representation (i.e. round
to a 7-bit mantissa), which permits the ratio to be computed via a pair of small look-up tables. C-code for
generating such tables is shown in pseudo-C function make_inv_tables().

All intermediate results in every floating point computation in the prediction algorithm will be represented in
single precision floating point using rounding described below.

The IEEE Floating Point computational unit used in executing all arithmetic in the prediction tool will enable
the following options:

• Round-to-Nearest, Even - Round to nearest representable value; round to the value with the least
significant bit equal to zero (even) when the two nearest representable values are equally near.

• Overflow exception - Values whose magnitude is greater than the largest representable value will
be set to the representation for infinty.

• Underflow exception - Gradual underflow (de-normalized numbers) will be supported; values
whose magnitude is less than the smallest representable value will be set to zero.

13.3.2.3 Fast Algorithm for Rounding

/* this does not conform to IEEE conventions of round to
 * nearest, even, but it is fast
 */
static void
flt_round_inf(float *pf)
{
 int flg;
 unsigned long tmp, tmp1, tmp2;

 tmp = *(unsigned long*)pf;
 flg = tmp & (unsigned long)0x00008000;
 tmp &= (unsigned long)0xffff0000;
 tmp1 = tmp;
 /* round 1/2 lsb toward infinity */
 if (flg) {

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 91

 tmp &= (unsigned long)0xff800000; /* extract exponent and sign */
 tmp |= (unsigned long)0x00010000; /* insert 1 lsb */
 tmp2 = tmp; /* add 1 lsb and elided one */
 tmp &= (unsigned long)0xff800000; /* extract exponent and sign */

 *pf = *(float*)&tmp1+*(float*)&tmp2-*(float*)&tmp;
 /* subtract elided one */
 } else {
 *pf = *(float*)&tmp;
 }
}

13.3.2.4 Generating Rounded b / Var

static float mnt_table[128];
static float exp_table[256];

/* function flt_round_even() only works for arguments in the range
 * 1.0 < *pf < 2.0 - 2^-24
 */
static void flt_round_even(float *pf)
{
 int exp,a;
 float tmp;

 frexp((double)*pf, &exp);
 tmp = *pf * (1<<(8-exp));
 a = (int)tmp;
 if ((tmp-a) >= 0.5) a++;
 if ((tmp-a) == 0.5) a&=-2;
 *pf = (float)a/(1<<(8-exp));
}

static void make_inv_tables(void)
{
 int i;
 unsigned long tmp1, tmp;
 float *pf = (float *)&tmp1;
 float ftmp;

 *pf = 1.0;
 for (i=0; i<128; i++) {
 tmp = tmp1 + (i<<16); /* float 1.m, 7 msb only */
 ftmp = b / *(float*)&tmp;
 flt_round_even(&ftmp); /* round to 16 bits */
 mnt_table[i] = ftmp;
 }
 for (i=0; i<256; i++) {
 tmp = (i<<23); /* float 1.0 * 2^exp */
 if (*(float*)&tmp > 1.0) {
 ftmp = 1.0 / *(float*)&tmp;
 } else {
 ftmp = 0;
 }
 exp_table[i] = ftmp;
 }
}

13.3.3 Predictor Reset

Initialization of a predictor means that the predictor’s state variables are set as follows: r0 = r1 = 0, COR1 =
COR2 = 0, VAR1 = VAR2 = 1. When the decoding process is started, all predictors are initialized.

ISO/IEC 13818-7:2006(E)

92 © ISO/IEC 2006 – All rights reserved

A cyclic reset mechanism is applied by the encoder and signaled to the decoder, in which all predictors are
initialized again in a certain time interval in an interleaved way. On one hand this increases predictor stability
by re-synchronizing the predictors of the encoder and the decoder and on the other hand it allows defined
entry points in the bitstream.

The whole set of predictors is subdivided into 30 so-called reset groups according to the following table:

Table 63 — Predictor reset groups

Reset group
number

Predictors of reset
group

1 P0, P30, P60, P90,...

2 P1, P31, P61, P91,...

3 P2, P32, P62, P92,...

...

30 P29, P59, P89, P119,...

where Pi is the predictor which corresponds to the spectral coefficient indexed by i.

Whether or not a reset has to be applied in the current frame is determined by the predictor_reset bit. If this
bit is set then the number of the predictor reset group to be reset in the current frame is specified in
predictor_reset_group_number. All predictors belonging to that reset group are then initialized as described
above. This initialization has to be done after the normal predictor processing for the current frame has been
carried out. Note that predictor_reset_group_number cannot have the value 0 or 31.

A typical reset cycle starts with reset group number 1 and the reset group number is then incremented by 1
until it reaches 30, and then it starts with 1 again. Nevertheless, it may happen, e.g. due to switching between
programs (bitstreams) or cutting and pasting, that there will be a discontinuity in the reset group numbering. If
this is the case, these are the following three possibilities for decoder operation:

• Ignore the discontinuity and carry on the normal processing. This may result in a short audible
distortion due to a mismatch (drift) between the predictors in the encoder and decoder. After one
complete reset cycle (reset group n, n+1, ..., 30, 1, 2, ..., n-1) the predictors are re-synchronized
again. Furthermore, a possible distortion is faded out because of the attenuation factors a and b.

• Detect the discontinuity, carry on the normal processing but mute the output until one complete
reset cycle is performed and the predictors are re-synchronized again.

• Reset all predictors.

Every predictor group has to be reset after a maximum ‘active’ period of 240 frames. The reset of the 30
predictor reset groups can be done either intermittently or in a burst or in whatever other pattern is convenient,
as long as the maximum reset period of 240 ‘active’ frames is not violated. Note that an ‘active’ period of 240
frames may take much longer than 240 frames, since frames with predictor activity may be interleaved with an
arbitrary number of frames without any predictor activity. Note further, that prediction groups may be active
independently of each other, so that separate ‘activity’ bookkeeping is required for each predictor reset group.

In case of a single_channel_element() or a channel_pair_element() with common_window = 0, the reset has
to be applied to the predictor bank(s) of the channel(s) associated with that element. In case of a
channel_pair_element() with common_window = 1, the reset has to be applied to the two predictor banks of
the two channels associated with that element.

In the case of a short block (i.e. window_sequence of type EIGHT_SHORT_SEQUENCE) all predictors in all
scalefactor bands must be reset.

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 93

13.4 Diagrams

z
-1

x

x x

+

+

+

a z
-1

bk1(n)

xest,2(n)

e1(n)

r0(n-1)

e0(n) xest(n)

r1(n-1)

xest,1(n)

xrec(n)

-

-
a

bk2(n)

Figure 7 — Flow graph of intra channel predictor for one spectral component in the decoder. The
dotted lines indicate the signal flow for the adaptation of the predictor coefficients.

RECONSTRUCTION

IF (PDP && PU)

xi,rec(n) = yi,rec(n) + xi,est(n)

ELSE

xi,rec(n) = yi,rec(n)

Pi

xi,est (n)

xi,rec (n)
Qi

-1

yi,q (n) yi,rec (n)

Predictor Side Info

Legend: P Predictor

iQ Inverse quantizer
i

-1

PDP predictor_data-present

PU prediction_used

z -1

xi,rec (n-1)

Figure 8 — Block diagram of decoder prediction unit for one single spectral component

14 Temporal Noise Shaping (TNS)

14.1 Tool Description

Temporal Noise Shaping is used to control the temporal shape of the quantization noise within each window
of the transform. This is done by applying a filtering process to parts of the spectral data of each channel.

Note that this tool includes certain profile dependent parameters (see subclause 7.1).

ISO/IEC 13818-7:2006(E)

94 © ISO/IEC 2006 – All rights reserved

14.2 Definitions

14.2.1 Data Elements

n_filt[w] Number of noise shaping filters used for window w (see
subclause 6.3, Table 19).

coef_res[w] Token indicating the resolution of the transmitted filter
coefficients for window w, switching between a resolution of
3 bits (0) and 4 bits (1) (see subclause 6.3, Table 19).

length[w][filt] Length of the region to which one filter is applied in window w (in
units of scalefactor bands) (see subclause 6.3, Table 19).

order[w][filt] Order of one noise shaping filter applied to window w (see
subclause 6.3, Table 19).

direction[w][filt] 1 bit indicating whether the filter is applied in upward (0) or
downward (1) direction (see subclause 6.3, Table 19).

coef_compress[w][filt] 1 bit indicating whether the most significant bit of the coefficients
of the noise shaping filter filt in window w are omitted from
transmission (1) or not (0) (see subclause 6.3, Table 19).

coef[w][filt][i] Coefficients of one noise shaping filter applied to window w (see
subclause 6.3, Table 19).

spec[w][k] Array containing the spectrum for the window w of the channel
being processed.

Note: Depending on the window_sequence the size of the following bitstream fields is switched for each transform window
according to its window size:

Name Window with 128 spectral
lines

Other window
size

'n_filt' 1 2

'length' 4 6

'order' 3 5

14.3 Decoding Process

The decoding process for Temporal Noise Shaping is carried out separately on each window of the current
frame by applying all-pole filtering to selected regions of the spectral coefficients (see function
tns_decode_frame).

The number of noise shaping filters applied to each window is specified by "n_filt". The target range of
spectral coefficients is defined in units of scalefactor bands counting down "length" bands from the top band
(or the bottom of the previous noise shaping band).

First the transmitted filter coefficients have to be decoded, i.e. conversion to signed numbers, inverse
quantization, conversion to LPC coefficients as described in function tns_decode_coef().

Then the all-pole filters are applied to the target frequency regions of the channel's spectral coefficients (see
function tns_ar_filter()). The token "direction" is used to determine the direction the filter is slid across the
coefficients (0 = upward, 1 = downward).

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 95

The constant TNS_MAX_BANDS defines the maximum number of scalefactor bands to which Temporal Noise
Shaping is applied. The maximum possible filter order is defined by the constant TNS_MAX_ORDER. Both
constants are profile dependent parameters.

The decoding process for one channel can be described as follows pseudo code:

/* TNS decoding for one channel and frame */
tns_decode_frame()
{
 for (w = 0; w < num_windows; w++) {
 bottom = num_swb;
 for (f = 0; f < n_filt[w]; f++) {
 top = bottom;
 bottom = max(top - length[w][f], 0);
 tns_order = min(order[w][f], TNS_MAX_ORDER);
 if (!tns_order) continue;
 tns_decode_coef(tns_order, coef_res[w]+3, coef_compress[w][f],
 coef[w][f], lpc[]);
 start = swb_offset[min(bottom,TNS_MAX_BANDS,max_sfb)];
 end = swb_offset[min(top,TNS_MAX_BANDS,max_sfb)];
 if ((size = end - start) <= 0) continue;
 if (direction[w][f]) {
 inc = -1; start = end - 1;
 } else {
 inc = 1;
 }
 tns_ar_filter(&spec[w][start], size, inc, lpc[], tns_order);
 }
 }
}

Please note that this pseudo code uses a C-style interpretation of arrays and vectors, i.e. if coef[w][filt][i]
describes the coefficients for all windows and filters, coef[w][filt] is a pointer to the coefficients of one particular
window and filter. Also, the identifier coef is used as a formal parameter in function tns_decode_coef().

/* Decoder transmitted coefficients for one TNS filter */
tns_decode_coef(order, coef_res_bits, coef_compress, coef[], a[])
{
 /* Some internal tables */
 sgn_mask[] = { 0x2, 0x4, 0x8 };
 neg_mask[] = { ~0x3, ~0x7, ~0xf };

 /* size used for transmission */
 coef_res2 = coef_res_bits - coef_compress;
 s_mask = sgn_mask[coef_res2 - 2]; /* mask for sign bit */
 n_mask = neg_mask[coef_res2 - 2]; /* mask for padding neg. values */

 /* Conversion to signed integer */
 for (i = 0; i < order; i++)
 tmp[i] = (coef[i] & s_mask) ? (coef[i] | n_mask) : coef[i];

 /* Inverse quantization */
 iqfac = ((1 << (coef_res_bits-1)) - 0.5) / (π/2.0);
 iqfac_m = ((1 << (coef_res_bits-1)) + 0.5) / (π/2.0);
 for (i = 0; i < order; i++) {
 tmp2[i] = sin(tmp[i] / ((tmp[i] >= 0) ? iqfac : iqfac_m));
 }

 /* Conversion to LPC coefficients */
 a[0] = 1;
 for (m = 1; m <= order; m++) {
 for (i = 1; i < m; i++) {
 b[i] = a[i] + tmp2[m-1] * a[m-i];
 }

ISO/IEC 13818-7:2006(E)

96 © ISO/IEC 2006 – All rights reserved

 for (i = 1; i < m; i++) {
 a[i] = b[i];
 }
 a[m] = tmp2[m-1];
 }
}

tns_ar_filter(spectrum[], size, inc, lpc[], order)
{
 - Simple all-pole filter of order "order" defined by
 y(n) = x(n) - lpc[1]*y(n-1) - ... - lpc[order]*y(n-order)

 - The state variables of the filter are initialized to zero every time

 - The output data is written over the input data ("in-place operation")

 - An input vector of "size" samples is processed and the index increment
 to the next data sample is given by "inc"
}

15 Filterbank and Block Switching

15.1 Tool Description

The time-frequency representation of the signal is mapped onto the time domain by feeding it into the
filterbank module. This module consists of an inverse modified discrete cosine transform (IMDCT), and a
window and an overlap-add function. In order to adapt the time/frequency resolution of the filterbank to the
characteristics of the input signal, a block switching tool is also adopted. N represents the window length,
where N is a function of the window_sequence, see subclause 8.3.3. For each channel, the N/2 time-
frequency values Xi,k are transformed into the N time domain values xi,n via the IMDCT. After applying the
window function, for each channel, the first half of the zi,n sequence is added to the second half of the previous
block windowed sequence z(i-1),n to reconstruct the output samples for each channel outi,n.

15.2 Definitions

The syntax elements for the filterbank are specified in the raw data stream for the single_channel_element()
(see subclause 6.3, Table 13), channel_pair_element() (see subclause 6.3, Table 14), and the
coupling_channel (see subclause 6.3, Table 22). They consist of the control information window_sequence
and window_shape.

15.2.1 Data Elements

window_sequence 2 bit indicating which window sequence (i.e. block size) is used
(see subclause 6.3, Table 15).

window_shape 1 bit indicating which window function is selected (see
subclause 6.3, Table 15).

Table 44 shows the four window_sequences (ONLY_LONG_SEQUENCE, LONG_START_SEQUENCE,
EIGHT_SHORT_SEQUENCE, LONG_STOP_SEQUENCE).

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 97

15.3 Decoding Process

15.3.1 IMDCT

The analytical expression of the IMDCT is:

()∑
−

=

⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛= ++

1
2

0

0,
2

12
cos]][[

2

N

k

ni knn
N

kispec
N

x
π

 for Nn <≤0

 1)/2(N/2 = n

 valuequence window_seon the basedlength window= N

indext coefficien spectral =k

index window= i

index sample =n

:where

0
+

The synthesis window length N for the inverse transform is a function of the syntax element
window_sequence and is defined as follows:

⎪
⎪
⎩

⎪
⎪
⎨

⎧

 (0x3) SEQUENCELONG_STOP_ if 2048,

 times)(8 (0x2), T_SEQUENCEEIGHT_SHOR if 256,

 (0x1) _SEQUENCELONG_START if 2048,

 (0x0) SEQUENCEONLY_LONG_ if 2048,

 =N

The meaningful block transitions are as follows:

from ONLY_LONG_SEQUENCE to
SEQUENCEONLY_LONG_
_SEQUENCELONG_START

{

from LONG_START_SEQUENCE to
T_SEQUENCEEIGHT_SHOR
SEQUENCELONG_STOP_

{

from LONG_STOP_SEQUENCE to
SEQUENCEONLY_LONG_
_SEQUENCELONG_START

{

 from EIGHT_SHORT_SEQUENCE to
T_SEQUENCEEIGHT_SHOR
SEQUENCELONG_STOP_

{

In addition to the meaningful block transitions the following transitions are possible:

from ONLY_LONG_SEQUENCE to
T_SEQUENCEEIGHT_SHOR
SEQUENCELONG_STOP_

{

from LONG_START_SEQUENCE to
SEQUENCEONLY_LONG_
_SEQUENCELONG_START

{

from LONG_STOP_SEQUENCE to
T_SEQUENCEEIGHT_SHOR
SEQUENCELONG_STOP_

{

 from EIGHT_SHORT_SEQUENCE to
SEQUENCEONLY_LONG_
_SEQUENCELONG_START

{

This will still result in a reasonably smooth transition from one block to the next.

ISO/IEC 13818-7:2006(E)

98 © ISO/IEC 2006 – All rights reserved

15.3.2 Windowing and Block Switching

Depending on the window_sequence and window_shape element different transform windows are used. A
combination of the window halves described as follows offers all possible window_sequences.

For window_shape == 1, the window coefficients are given by the Kaiser - Bessel derived (KBD) window as
follows:

()
()[]

()[] 2
0for

2/

0

0

,'

,'

,_

N
nn

N

p

n

p

pW

pW

NLEFTKBD
W <≤=

∑

∑

=

=

α

α

()
()[]

()[]
Nn

N
n

N

p

nN

p

pW

pW

NRIGHTKBD
W <≤=

∑

∑

=

−−

=

2
for

2/

0

1

0

,'

,'

,_
α

α

where:

W’ (Kaiser-Bessel kernel window function, see also Error! Reference source not found.) is defined as
follows:

[]

4/

4/
0.1I

 =),('

0

2

0

πα

πα

α
I

N

Nn

nW
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −

−

 for
2

0
N

n ≤≤

[]

⎩
⎨
⎧

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∑
∞

=
=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

256 = Nfor 6

2048=Nfor 4
= factor, alpha windowkernel =

0

2

!

2
I

0

αα

k
k

k
x

x

Otherwise, for window_shape == 0, a sine window is employed as follows:

()
2

0for))
2

1
(sin(

,_

N
nn n

NNLEFTSIN
W <≤= +

π

() Nn
N

n n
NNRIGHTSIN

W <≤= +
2

for))
2

1
(sin(

,_

π

The window length N can be 2048 or 256 for the KBD and the sine window. How to obtain the possible
window sequences is explained in the parts a) - d) of this clause. All four window_sequences described below
have a total length of 2048 samples.

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 99

For all kinds of window_sequences the window_shape of the left half of the first transform window is
determined by the window shape of the previous block. The following formula expresses this fact:

⎩
⎨
⎧

==
==

=
0 if),(

1 if ,)(
)(

,_

,_

, s_blockpe_previouwindow_shanW

s_blockpe_previouwindow_shanW
nW

NLEFTSIN

NLEFTKBD

NLEFT

where:

window_shape_previous_block: window_shape of the previous block (i-1).

For the first block of the bitstream to be decoded the window_shape of the left and right half of the window
are identical.

a) ONLY_LONG_SEQUENCE:

The window_sequence == ONLY_LONG_SEQUENCE is equal to one LONG_WINDOW (see Table 44) with
a total window length of 2048.

For window_shape == 1 the window for ONLY_LONG_SEQUENCE is given as follows:

()
2048n0241for ,)(

1024n0for ,)(

2048,_

2048,

⎩
⎨
⎧

<≤
<≤

=
nW

nW
n

RIGHTKBD

LEFT
W

If window_shape == 0 the window for ONLY_LONG_SEQUENCE can be described as follows:

()
0482n1024for ,)(

0241n0for ,)(

2048,_

2048,

⎩
⎨
⎧

<≤
<≤

=
nW

nW
n

RIGHTSIN

LEFT
W

After windowing, the time domain values (zi,n) can be expressed as:

;)(,, nini xnwz ⋅=

b) LONG_START_SEQUENCE:

The LONG_START_SEQUENCE is needed to obtain a correct overlap and add for a block transition from a
ONLY_LONG_SEQUENCE to a EIGHT_SHORT_SEQUENCE.

If window_shape == 1 the window for LONG_START_SEQUENCE is given as follows:

()

⎪
⎪
⎩

⎪
⎪
⎨

⎧

<≤
<≤−+
<≤

<≤

=

2048n1600for ,0.0

1600n1472for ,)1472128(

4721n1024for ,0.1

0241n0for ,)(

256,_

2048,

nW

nW

n
RIGHTKBD

LEFT

W

If window_shape == 0 the window for LONG_START_SEQUENCE looks like:

()

⎪
⎪
⎩

⎪
⎪
⎨

⎧

<≤
<≤−+
<≤

<≤

=

2048n1600for ,0.0

1600n1472for ,)1472128(

4721n1024for ,0.1

0241n0for ,)(

256,_

2048,

nW

nW

n
RIGHTSIN

LEFT

W

ISO/IEC 13818-7:2006(E)

100 © ISO/IEC 2006 – All rights reserved

The windowed time-domain values can be calculated with the formula explained in a).

c) EIGHT_SHORT

The window_sequence == EIGHT_SHORT comprises eight overlapped and added SHORT_WINDOWs (see
Table 44) with a length of 256 each. The total length of the window_sequence together with leading and
following zeros is 2048. Each of the eight short blocks are windowed separately first. The short block number
is indexed with the variable j = 0,…, 7.

The window_shape of the previous block influences the first of the eight short blocks (W0(n)) only.

If window_shape == 1 the window functions can be given as follows:

()
562n128for ,)(

128n0for ,)(

256,_

256,

0 ⎩
⎨
⎧

<≤
<≤

=
nW

nW
n

RIGHTKBD

LEFT
W

()
562n128for),(

128n0for ,)(

256,_

256,_

71 ⎩
⎨
⎧

<≤
<≤

=
− nW

nW
n

RIGHTKBD

LEFTKBD
W

Otherwise, if window_shape == 0, the window functions can be described as:

()
562n128for ,)(

128n0for ,)(

256,_

256,

0 ⎩
⎨
⎧

<≤
<≤

=
nW

nW
n

RIGHTSIN

LEFT
W

()
562n128for),(

128n0for ,)(

256,_

256,_

71 ⎩
⎨
⎧

<≤
<≤

=
− nW

nW
n

RIGHTSIN

LEFTSIN
W

The overlap and add between the EIGHT_SHORT window_sequence resulting in the windowed time domain
values zi,n is described as follows:

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

<≤

<≤−⋅

<≤−⋅+−⋅

<≤−⋅+−⋅

<≤−⋅+−⋅

<≤−⋅+−⋅
<≤−⋅+−⋅
<≤−⋅+−⋅

<≤−⋅+−⋅

<≤−⋅
<≤

=

−

−−

−−

−−

−−

−−

−−

−−

−

2048n1600for ,0

1600n1472for),1344(

1472n1344for),1344()1216(

1344n1216for),1216()1088(

1216n1088for),1088()960(

1088n960for),960()832(

 960n832for),832()704(

832n704for),704()576(

704n576for),576()448(

 576n448for),448(

 448n0for ,0

71344,

71344,61216,

61216,51088,

51088,4960,

4960,3832,

3832,2704,

2704,1576,

1576,0448,

0448,

,

nWx

nWxnWx

nWxnWx

nWxnWx

nWxnWx

nWxnWx

nWxnWx

nWxnWx

nWx

z

ni

nini

nini

nini

nini

nini

nini

nini

ni

ni

d) LONG_STOP_SEQUENCE

This window_sequence is needed to switch from a EIGHT_SHORT_SEQUENCE back to a
ONLY_LONG_SEQUENCE.

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 101

If window_shape == 1 the window for LONG_STOP_SEQUENCE is given as follows:

()

⎪
⎪
⎩

⎪
⎪
⎨

⎧

<≤
<≤
<≤−

<≤

=

2048n1024for ,)(

1024n576for ,0.1

576n448for ,)448(

448n0for ,0.0

2048,_

256,

nW

nW
n

RIGHTKBD

LEFT
W

If window_shape == 0 the window for LONG_START_SEQUENCE is determined by:

()

⎪
⎪
⎩

⎪
⎪
⎨

⎧

<≤
<≤
<≤−

<≤

=

2048n1024for ,)(

1024n576for ,0.1

576n448for ,)448(

448n0for ,0.0

2048,_

256,

nW

nW
n

RIGHTSIN

LEFT
W

The windowed time domain values can be calculated with the formula explained in a).

15.3.3 Overlapping and Adding with Previous Window Sequence

Besides the overlap and add within the EIGHT_SHORT window_sequence the first (left) half of every
window_sequence is overlapped and added with the second (right) half of the previous window_sequence
resulting in the final time domain values outi,n. The mathematic expression for this operation can be described
as follows. It is valid for all four possible window_sequences.

2048N ,
2

N
n0for ;

2
,1

,, =<≤+=
+−

N
ni

nini zzout

16 Gain Control

16.1 Tool Description

The gain control tool is made up of several gain compensators and overlap/add processing stages, and an
IPQF (Inverse Polyphase Quadrature Filter) stage. This tool receives non-overlapped signal sequences
provided by the IMDCT stages, window_sequence and gain_control_data, and then reproduces the output
PCM data. The block diagram for the gain control tool is shown in Figure 9.

Due to the characteristics of the PQF filterbank, the order of the MDCT coefficients in each even PQF band
must be reversed. This is done by reversing the spectral order of the MDCT coefficients, i.e. exchanging the
higher frequency MDCT coefficients with the lower frequency MDCT coefficients.

If the gain control tool is used, the configuration of the filter bank tool is changed as follows. In the case of an
EIGHT_SHORT_SEQUENCE window_sequence, the number of coefficients for the IMDCT is 32 instead of
128 and eight IMDCTs are carried out. In the case of other window_sequence values, the number of
coefficients for the IMDCT is 256 instead of 1024 and one IMDCT is performed. In all cases, the filter bank
tool outputs a total of 2048 non-overlapped values per frame. These values are supplied to the gain control

tool as ()jU BW , defined in 16.3.3.

The IPQF combines four uniform frequency bands and produces a decoded time domain output signal. The
aliasing components introduced by the PQF in the encoder are cancelled by the IPQF.

The gain values for each band can be controlled independently except for the lowest frequency band. The
step size of gain control is 2 ^ n where n is an integer.

The gain control tool outputs a time signal sequence which is ()nAS defined in 16.3.4.

ISO/IEC 13818-7:2006(E)

102 © ISO/IEC 2006 – All rights reserved

16.2 Definitions

16.2.1 Data Elements

adjust_num 3-bit field indicating the number of gain changes for each IPQF
band. The maximum number of gain changes is seven (see
subclause 6.3, Table 27).

max_band 2-bit field indicating the number of IPQF bands in which their
signal gain have been controlled.

 The meanings of this value are shown below (see subclause 6.3,
Table 27).

 0: no bands have activated gain control.

 1: signal gain on 2nd IPQF band has been controlled.

 2: signal gain on 2nd and 3rd IPQF bands have been controlled.

 3: signal gain on 2nd, 3rd and 4th IPQF bands have been
controlled.

alevcode 4-bit field indicating the gain value for one gain change (see
subclause 6.3, Table 27).

aloccode 2-, 4-, or 5-bit field indicating the position for one gain change.
The length of this data varies depending on the window
sequence (see subclause 6.3, Table 27).

16.2.2 Help Elements

gain control data side information indicating the gain values and the positions used
for the gain change.

IPQF band each split band of IPQF.

16.3 Decoding Process

The following four processes are required for decoding.

 (1) Gain control data decoding

 (2) Gain control function setting

 (3) Gain control windowing and overlapping

 (4) Synthesis filter

16.3.1 Gain Control Data Decoding

Gain control data are reconstructed as follows.

(1)

 [][]WBNAD BW adjust_num, =

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 103

(2)

 () [][][]() BWBW NADmmWBAdjLocmALOC ,, 1,1aloccode ≤≤−=

 () [][][]()
BW

mWBAdjLev

BW NADmmALEV ,

1alevcode

, 1,2 ≤≤= −

(3)

 () 00, =BWALOC

 () ()⎩
⎨
⎧ ==

=
otherwiseALEV

NADif
ALEV

BW

BW

BW ,1

0,1
0

,

,

,

(4)

 ()

⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

⎭
⎬
⎫

==
==
≤≤

⎭
⎬
⎫

==
==
==

=+

SEQUENCELONG_STOP_
1,256

0,112

T_SEQUENCEEIGHT_SHOR70,32

_SEQUENCELONG_START
1,32

0,112

SEQUENCEONLY_LONG_0,256

1,,

if
W

W

ifW

if
W

W

ifW

NADALOC BWBW

 () 11,, =+BWBW NADALEV

where

BWNAD , : Gain Control Information Number, an integer

()mALOC BW , : Gain Control Location, an integer

()mALEV BW , : Gain Control Level, an integer-valued real number

B: Band ID, an integer from 1 to 3

W: Window ID, an integer from 0 to 7

m: an integer

aloccode[B][W][m] must be set so that (){ }mALOC BW , satisfies the following conditions.

 () () 11, ,212,1, +≤<≤< BWBWBW NADmmmALOCmALOC

In cases of LONG_START_SEQUENCE and LONG_STOP_SEQUENCE, the values 14 and 15 of
aloccode[B][0][m] are invalid. AdjLoc() is defined in Table 64. AdjLev() is defined in Table 65.

ISO/IEC 13818-7:2006(E)

104 © ISO/IEC 2006 – All rights reserved

16.3.2 Gain Control Function Setting

The Gain control function is obtained as follows.

(1)

 (){ },: ,,, jmALOCmMaxM BWjBW ≤=

 SEQUENCEONLY_LONG_0,2550 ifWj ==≤≤

 _SEQUENCELONG_START
1,310

0,1110
if

Wj

Wj

⎭
⎬
⎫

==≤≤
==≤≤

 T_SEQUENCEEIGHT_SHOR70,310 ifWj ≤≤≤≤

 SEQUENCELONG_STOP_
1,2550

0,1110
if

Wj

Wj

⎭
⎬
⎫

==≤≤
==≤≤

(2)

 ()

()
()

()
() ()

()⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

+
+≤≤

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

−

+
=

otherwiseMALEV

MALOCjMALOCif

MALOCj

MALEV

MALEV

Inter

jFMD

jBWBW

jBWBWjBWBW

jBWBW

jBWBW

jBWBW

BW

,

,,

,

,

,

,

,

,

1

7

1

,,

,,,,,

,,

,,

,,

,

(3)

if ONLY_LONG_SEQUENCE

 () () ()
()⎩

⎨
⎧

≤≤−
≤≤×

=
511256,256

2550,0

,0

,0

,0 jjFMD

jjPFMDALEV
jGMF

B

BB

B

 () () 2550,,0 ≤≤= jjFMDjPFMD BB

if LONG_START_SEQUENCE

 ()

() () ()
() ()
()

⎪
⎪
⎩

⎪
⎪
⎨

⎧

≤≤
≤≤−

≤≤−×
≤≤××

=

511400,1

399368,368

367256,2560

2550,00

,1

,0,1

,1,0

,0

j

jjFMD

jjFMDALEV

jjPFMDALEVALEV

jGMF
B

BB

BBB

B

 () () 310,,1 ≤≤= jjFMDjPFMD BB

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 105

if EIGHT_SHORT_SEQUENCE

 ()
() ()
() ()
()⎪

⎩

⎪
⎨

⎧

≤≤≤≤−
≤≤≤≤×

≤≤==×
= −

6332,70,32

310,71,0

310,0,0

,

,1,

,

,

jWjFMD

jWjFMDALEV

jWjPFMDALEV

jGMF

BW

BWBW

BBW

BW

 () () 310,,7 ≤≤= jjFMDjPFMD BB

if LONG_STOP_SEQUENCE

 () () () ()
() ()
()⎪

⎪
⎩

⎪
⎪
⎨

⎧

≤≤−
≤≤−×

≤≤−××
≤≤

=

511256,256

255144,1440

143112,11200

1110,1

,1

,0,1

,1,0

,0

jjFMD

jjFMDALEV

jjPFMDALEVALEV

j

jGMF

B

BB

BBB

B

 () () 2550,,1 ≤≤= jjFMDjPFMD BB

(4)

 () () ,
1

,

,
jGMF

jAD
BW

BW =

 SEQUENCEONLY_LONG_0,5110 ifWj ==≤≤

 _SEQUENCELONG_START0,5110 ifWj ==≤≤

 T_SEQUENCEEIGHT_SHOR70,630 ifWj ≤≤≤≤

 SEQUENCELONG_STOP_0,5110 ifWj ==≤≤

where

()jFMD BW , : Fragment Modification Function, a real number

()jPFMDB : Fragment Modification Function of previous frame, a real number

()jGMF BW , : Gain Modification Function, a real number

()jAD BW , : Gain Control Function, a real number

()mALOC BW , : Gain Control Location defined in subclause 16.3.1, an integer

()mALEV BW , : Gain Control Level defined in subclause 16.3.1, an integer-valued real number

B: Band ID, an integer from 1 to 3

W: Window ID, an integer from 0 to 7

ISO/IEC 13818-7:2006(E)

106 © ISO/IEC 2006 – All rights reserved

jBWM ,, : an integer

m: an integer

and

 ()
() () ()

8

loglog8 22

2,,

bjaj

jbaInter

+−

=

Note that the initial value of ()jPFMDB must be set 1.0.

16.3.3 Gain Control Windowing and Overlapping

Band Sample Data are obtained through the processes (1) to (2) shown below.

(1) Gain Control Windowing

if B = 0

 () (),,, jUjT BWBW =

 SEQUENCEONLY_LONG_0,5110 ifWj ==≤≤

 _SEQUENCELONG_START0,5110 ifWj ==≤≤

 T_SEQUENCEEIGHT_SHOR70,630 ifWj ≤≤≤≤

 SEQUENCELONG_STOP_0,5110 ifWj ==≤≤

else

 () () (),,,, jUjADjT BWBWBW ×=

 SEQUENCEONLY_LONG_0,5110 ifWj ==≤≤

 _SEQUENCELONG_START0,5110 ifWj ==≤≤

 T_SEQUENCEEIGHT_SHOR70,630 ifWj ≤≤≤≤

 SEQUENCELONG_STOP_0,5110 ifWj ==≤≤

(2) Overlapping

if ONLY_LONG_SEQUENCE

 () () () 2550,,0 ≤≤+= jjTjPTjV BBB

 () () 2550,256,0 ≤≤+= jjTjPT BB

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 107

if LONG_START_SEQUENCE

 () () () 2550,,0 ≤≤+= jjTjPTjV BBB

 () () 1110,256256 ,0 ≤≤+=+ jjTjV BB

 () () 310,368,0 ≤≤+= jjTjPT BB

if EIGHT_SHORT_SEQUENCE

 () () () 310,0,, ≤≤==+= jWjTjPTjV BWBB

 () () () 310,71,3232 ,,1 ≤≤≤≤++=+ − jWjTjTjWV BWBWB

 () () 310,7,32, ≤≤==+= jWjTjPT BwB

if LONG_STOP_SEQUENCE

 () () () 310,112,0 ≤≤++= jjTjPTjV BBB

 () () 1110,14432 ,0 ≤≤+=+ jjTjV BB

 () () 2550,256,0 ≤≤+= jjTjPT BB

where

()jU BW , : Band Spectrum Data, a real number

()jT BW , : Gain Controlled Block Sample Data, a real number

()jPTB : Gain Controlled Block Sample Data of previous frame, a real number

()jVB : Band Sample Data, a real number

()jAD BW , : Gain Control Function defined in subclause 16.3.2, a real number

B: Band ID, an integer from 0 to 3

W: Window ID, an integer from 0 to 7

j: an integer

Note that the initial value of ()jPTB must be set 0.0.

ISO/IEC 13818-7:2006(E)

108 © ISO/IEC 2006 – All rights reserved

16.3.4 Synthesis Filter

Audio Sample Data are obtained from the following equations.

(1)

 () ()
⎩
⎨
⎧

≤≤
==

= 30
,0

,4,~
B

else

kjifkV
jV

B

B

(2)

 () () ()()
30,950,

16

3212
cos ≤≤≤≤⎟

⎠
⎞

⎜
⎝
⎛ −+

×= Bj
jB

jQjQB

π

(3)

 () () ()∑∑
= =

−×=
3

0

95

0

~

B j

BB jnVjQnAS

where

()nAS : Audio Sample Data

()nVB : Band Sample Data defined in subclause 16.3.3, a real number

()jVB

~
: Interpolated Band Sample Data, a real number

()jQB : Synthesis Filter Coefficients, a real number

()jQ : Prototype Coefficients given below, a real number

B: Band ID, an integer from 0 to 3

W: Window ID, an integer from 0 to 7

n: an integer

j: an integer

k: an integer

The values of Q(0) to Q(47) are shown in Table 66. The values of Q(48) to Q(95) are obtained from the
following equation.

 () () 9548,95 ≤≤−= jjQjQ

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 109

16.4 Diagrams

IPQF

Overlapping

gain_

control_

data

gain control tool

Gain

Compensator

& Overlapping

Gain

Compensator

& Overlapping

Gain

Compensator

& Overlapping

window_

sequence

non-

overlapped

time signal

output

PCM

data

256 or 32

IMDCT

256 or 32

IMDCT

256 or 32

IMDCT

256 or 32

IMDCT

Spectral

reverse

Spectral

reverse

Figure 9 — Block diagram of gain control tool

16.5 Tables

Table 64 — AdjLoc()

AC AdjLoc(AC) AC AdjLoc(AC)

0 0 16 128
1 8 17 136
2 16 18 144
3 24 19 152
4 32 20 160
5 40 21 168
6 48 22 176
7 56 23 184
8 64 24 192
9 72 25 200
10 80 26 208
11 88 27 216
12 96 28 224
13 104 29 232
14 112 30 240
15 120 31 248

ISO/IEC 13818-7:2006(E)

110 © ISO/IEC 2006 – All rights reserved

Table 65 — AdjLev()

AV AdjLev(AV)

0 -4
1 -3
2 -2
3 -1
4 0
5 1
6 2
7 3
8 4
9 5
10 6
11 7
12 8
13 9
14 10
15 11

Table 66 — Q()

j Q(j) j Q(j)

0 9.7655291007575512E-05 24 -2.2656858741499447E-02
1 1.3809589379038567E-04 25 -6.8031113858963354E-03
2 9.8400749256623534E-05 26 1.5085400948280744E-02
3 -8.6671544782335723E-05 27 3.9750993388272739E-02
4 -4.6217998911921346E-04 28 6.2445363629436743E-02
5 -1.0211814095158174E-03 29 7.7622327748721326E-02
6 -1.6772149340010668E-03 30 7.9968338496132926E-02
7 -2.2533338951411081E-03 31 6.5615493068475583E-02
8 -2.4987888343213967E-03 32 3.3313658300882690E-02
9 -2.1390815966761882E-03 33 -1.4691563058190206E-02
10 -9.5595397454597772E-04 34 -7.2307890475334147E-02
11 1.1172111530118943E-03 35 -1.2993222541703875E-01
12 3.9091309127348584E-03 36 -1.7551641029040532E-01
13 6.9635703420118673E-03 37 -1.9626543957670528E-01
14 9.5595442159478339E-03 38 -1.8073330670215029E-01
15 1.0815766540021360E-02 39 -1.2097653136035738E-01
16 9.8770514991715300E-03 40 -1.4377370758549035E-02
17 6.1562567291327357E-03 41 1.3522730742860303E-01
18 -4.1793946063629710E-04 42 3.1737852699301633E-01
19 -9.2128743097707640E-03 43 5.1590021798482233E-01
20 -1.8830775873369020E-02 44 7.1080020379761377E-01
21 -2.7226498457701823E-02 45 8.8090632488444798E-01
22 -3.2022840857588906E-02 46 1.0068321641150089E+00
23 -3.0996332527754609E-02 47 1.0737914947736096E+00

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 111

Annex A
(normative)

Huffman Codebook Tables

Table A.1 — Scalefactor Huffman Codebook

index length codeword
(hexadecimal)

index length codeword
(hexadecimal)

0 18 3ffe8 61 4 a

1 18 3ffe6 62 4 c

2 18 3ffe7 63 5 1b

3 18 3ffe5 64 6 39

4 19 7fff5 65 6 3b

5 19 7fff1 66 7 78

6 19 7ffed 67 7 7a

7 19 7fff6 68 8 f7

8 19 7ffee 69 8 f9

9 19 7ffef 70 9 1f6

10 19 7fff0 71 9 1f9

11 19 7fffc 72 10 3f4

12 19 7fffd 73 10 3f6

13 19 7ffff 74 10 3f8

14 19 7fffe 75 11 7f5

15 19 7fff7 76 11 7f4

16 19 7fff8 77 11 7f6

17 19 7fffb 78 11 7f7

18 19 7fff9 79 12 ff5

19 18 3ffe4 80 12 ff8

20 19 7fffa 81 13 1ff4

21 18 3ffe3 82 13 1ff6

22 17 1ffef 83 13 1ff8

23 17 1fff0 84 14 3ff8

24 16 fff5 85 14 3ff4

25 17 1ffee 86 16 fff0

26 16 fff2 87 15 7ff4

27 16 fff3 88 16 fff6

28 16 fff4 89 15 7ff5

29 16 fff1 90 18 3ffe2

30 15 7ff6 91 19 7ffd9

31 15 7ff7 92 19 7ffda

32 14 3ff9 93 19 7ffdb

33 14 3ff5 94 19 7ffdc

34 14 3ff7 95 19 7ffdd

35 14 3ff3 96 19 7ffde

36 14 3ff6 97 19 7ffd8

37 14 3ff2 98 19 7ffd2

38 13 1ff7 99 19 7ffd3

39 13 1ff5 100 19 7ffd4

40 12 ff9 101 19 7ffd5

41 12 ff7 102 19 7ffd6

42 12 ff6 103 19 7fff2

43 11 7f9 104 19 7ffdf

ISO/IEC 13818-7:2006(E)

112 © ISO/IEC 2006 – All rights reserved

44 12 ff4 105 19 7ffe7

45 11 7f8 106 19 7ffe8

46 10 3f9 107 19 7ffe9

47 10 3f7 108 19 7ffea

48 10 3f5 109 19 7ffeb

49 9 1f8 110 19 7ffe6

50 9 1f7 111 19 7ffe0

51 8 fa 112 19 7ffe1

52 8 f8 113 19 7ffe2

53 8 f6 114 19 7ffe3

54 7 79 115 19 7ffe4

55 6 3a 116 19 7ffe5

56 6 38 117 19 7ffd7

57 5 1a 118 19 7ffec

58 4 b 119 19 7fff4

59 3 4 120 19 7fff3

60 1 0

Table A.2 — Spectrum Huffman Codebook 1

index length codeword
(hexadecimal)

index length codeword
(hexadecimal)

0 11 7f8 41 5 14

1 9 1f1 42 7 65

2 11 7fd 43 5 16

3 10 3f5 44 7 6d

4 7 68 45 9 1e9

5 10 3f0 46 7 63

6 11 7f7 47 9 1e4

7 9 1ec 48 7 6b

8 11 7f5 49 5 13

9 10 3f1 50 7 71

10 7 72 51 9 1e3

11 10 3f4 52 7 70

12 7 74 53 9 1f3

13 5 11 54 11 7fe

14 7 76 55 9 1e7

15 9 1eb 56 11 7f3

16 7 6c 57 9 1ef

17 10 3f6 58 7 60

18 11 7fc 59 9 1ee

19 9 1e1 60 11 7f0

20 11 7f1 61 9 1e2

21 9 1f0 62 11 7fa

22 7 61 63 10 3f3

23 9 1f6 64 7 6a

24 11 7f2 65 9 1e8

25 9 1ea 66 7 75

26 11 7fb 67 5 10

27 9 1f2 68 7 73

28 7 69 69 9 1f4

29 9 1ed 70 7 6e

30 7 77 71 10 3f7

31 5 17 72 11 7f6

32 7 6f 73 9 1e0

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 113

33 9 1e6 74 11 7f9

34 7 64 75 10 3f2

35 9 1e5 76 7 66

36 7 67 77 9 1f5

37 5 15 78 11 7ff

38 7 62 79 9 1f7

39 5 12 80 11 7f4

40 1 0

Table A.3 — Spectrum Huffman Codebook 2

index length codeword
(hexadecimal)

index length codeword
(hexadecimal)

0 9 1f3 41 5 7

1 7 6f 42 6 1d

2 9 1fd 43 5 b

3 8 eb 44 6 30

4 6 23 45 8 ef

5 8 ea 46 6 1c

6 9 1f7 47 7 64

7 8 e8 48 6 1e

8 9 1fa 49 5 c

9 8 f2 50 6 29

10 6 2d 51 8 f3

11 7 70 52 6 2f

12 6 20 53 8 f0

13 5 6 54 9 1fc

14 6 2b 55 7 71

15 7 6e 56 9 1f2

16 6 28 57 8 f4

17 8 e9 58 6 21

18 9 1f9 59 8 e6

19 7 66 60 8 f7

20 8 f8 61 7 68

21 8 e7 62 9 1f8

22 6 1b 63 8 ee

23 8 f1 64 6 22

24 9 1f4 65 7 65

25 7 6b 66 6 31

26 9 1f5 67 4 2

27 8 ec 68 6 26

28 6 2a 69 8 ed

29 7 6c 70 6 25

30 6 2c 71 7 6a

31 5 a 72 9 1fb

32 6 27 73 7 72

33 7 67 74 9 1fe

34 6 1a 75 7 69

35 8 f5 76 6 2e

36 6 24 77 8 f6

37 5 8 78 9 1ff

38 6 1f 79 7 6d

39 5 9 80 9 1f6

40 3 0

ISO/IEC 13818-7:2006(E)

114 © ISO/IEC 2006 – All rights reserved

Table A.4 — Spectrum Huffman Codebook 3

index length codeword
(hexadecimal)

index length codeword
(hexadecimal)

0 1 0 41 10 3ef

1 4 9 42 9 1f3

2 8 ef 43 9 1f4

3 4 b 44 11 7f6

4 5 19 45 9 1e8

5 8 f0 46 10 3ea

6 9 1eb 47 13 1ffc

7 9 1e6 48 8 f2

8 10 3f2 49 9 1f1

9 4 a 50 12 ffb

10 6 35 51 10 3f5

11 9 1ef 52 11 7f3

12 6 34 53 12 ffc

13 6 37 54 8 ee

14 9 1e9 55 10 3f7

15 9 1ed 56 15 7ffe

16 9 1e7 57 9 1f0

17 10 3f3 58 11 7f5

18 9 1ee 59 15 7ffd

19 10 3ed 60 13 1ffb

20 13 1ffa 61 14 3ffa

21 9 1ec 62 16 ffff

22 9 1f2 63 8 f1

23 11 7f9 64 10 3f0

24 11 7f8 65 14 3ffc

25 10 3f8 66 9 1ea

26 12 ff8 67 10 3ee

27 4 8 68 14 3ffb

28 6 38 69 12 ff6

29 10 3f6 70 12 ffa

30 6 36 71 15 7ffc

31 7 75 72 11 7f2

32 10 3f1 73 12 ff5

33 10 3eb 74 16 fffe

34 10 3ec 75 10 3f4

35 12 ff4 76 11 7f7

36 5 18 77 15 7ffb

37 7 76 78 12 ff7

38 11 7f4 79 12 ff9

39 6 39 80 15 7ffa

40 7 74

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 115

Table A.5 — Spectrum Huffman Codebook 4

index length codeword
(hexadecimal)

index length codeword
(hexadecimal)

0 4 7 41 7 6b

1 5 16 42 8 e3

2 8 f6 43 7 69

3 5 18 44 9 1f3

4 4 8 45 8 eb

5 8 ef 46 8 e6

6 9 1ef 47 10 3f6

7 8 f3 48 7 6e

8 11 7f8 49 7 6a

9 5 19 50 9 1f4

10 5 17 51 10 3ec

11 8 ed 52 9 1f0

12 5 15 53 10 3f9

13 4 1 54 8 f5

14 8 e2 55 8 ec

15 8 f0 56 11 7fb

16 7 70 57 8 ea

17 10 3f0 58 7 6f

18 9 1ee 59 10 3f7

19 8 f1 60 11 7f9

20 11 7fa 61 10 3f3

21 8 ee 62 12 fff

22 8 e4 63 8 e9

23 10 3f2 64 7 6d

24 11 7f6 65 10 3f8

25 10 3ef 66 7 6c

26 11 7fd 67 7 68

27 4 5 68 9 1f5

28 5 14 69 10 3ee

29 8 f2 70 9 1f2

30 4 9 71 11 7f4

31 4 4 72 11 7f7

32 8 e5 73 10 3f1

33 8 f4 74 12 ffe

34 8 e8 75 10 3ed

35 10 3f4 76 9 1f1

36 4 6 77 11 7f5

37 4 2 78 11 7fe

38 8 e7 79 10 3f5

39 4 3 80 11 7fc

40 4 0

ISO/IEC 13818-7:2006(E)

116 © ISO/IEC 2006 – All rights reserved

Table A.6 — Spectrum Huffman Codebook 5

index length codeword
(hexadecimal)

index length codeword
(hexadecimal)

0 13 1fff 41 4 a

1 12 ff7 42 7 71

2 11 7f4 43 8 f3

3 11 7e8 44 11 7e9

4 10 3f1 45 11 7ef

5 11 7ee 46 9 1ee

6 11 7f9 47 8 ef

7 12 ff8 48 5 18

8 13 1ffd 49 4 9

9 12 ffd 50 5 1b

10 11 7f1 51 8 eb

11 10 3e8 52 9 1e9

12 9 1e8 53 11 7ec

13 8 f0 54 11 7f6

14 9 1ec 55 10 3eb

15 10 3ee 56 9 1f3

16 11 7f2 57 8 ed

17 12 ffa 58 7 72

18 12 ff4 59 8 e9

19 10 3ef 60 9 1f1

20 9 1f2 61 10 3ed

21 8 e8 62 11 7f7

22 7 70 63 12 ff6

23 8 ec 64 11 7f0

24 9 1f0 65 10 3e9

25 10 3ea 66 9 1ed

26 11 7f3 67 8 f1

27 11 7eb 68 9 1ea

28 9 1eb 69 10 3ec

29 8 ea 70 11 7f8

30 5 1a 71 12 ff9

31 4 8 72 13 1ffc

32 5 19 73 12 ffc

33 8 ee 74 12 ff5

34 9 1ef 75 11 7ea

35 11 7ed 76 10 3f3

36 10 3f0 77 10 3f2

37 8 f2 78 11 7f5

38 7 73 79 12 ffb

39 4 b 80 13 1ffe

40 1 0

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 117

Table A.7 — Spectrum Huffman Codebook 6

index length codeword
(hexadecimal)

index length codeword
(hexadecimal)

0 11 7fe 41 4 3

1 10 3fd 42 6 2f

2 9 1f1 43 7 73

3 9 1eb 44 9 1fa

4 9 1f4 45 9 1e7

5 9 1ea 46 7 6e

6 9 1f0 47 6 2b

7 10 3fc 48 4 7

8 11 7fd 49 4 1

9 10 3f6 50 4 5

10 9 1e5 51 6 2c

11 8 ea 52 7 6d

12 7 6c 53 9 1ec

13 7 71 54 9 1f9

14 7 68 55 8 ee

15 8 f0 56 6 30

16 9 1e6 57 6 24

17 10 3f7 58 6 2a

18 9 1f3 59 6 25

19 8 ef 60 6 33

20 6 32 61 8 ec

21 6 27 62 9 1f2

22 6 28 63 10 3f8

23 6 26 64 9 1e4

24 6 31 65 8 ed

25 8 eb 66 7 6a

26 9 1f7 67 7 70

27 9 1e8 68 7 69

28 7 6f 69 7 74

29 6 2e 70 8 f1

30 4 8 71 10 3fa

31 4 4 72 11 7ff

32 4 6 73 10 3f9

33 6 29 74 9 1f6

34 7 6b 75 9 1ed

35 9 1ee 76 9 1f8

36 9 1ef 77 9 1e9

37 7 72 78 9 1f5

38 6 2d 79 10 3fb

39 4 2 80 11 7fc

40 4 0

ISO/IEC 13818-7:2006(E)

118 © ISO/IEC 2006 – All rights reserved

Table A.8 — Spectrum Huffman Codebook 7

index length codeword
(hexadecimal)

index length codeword
(hexadecimal)

0 1 0 32 8 f3

1 3 5 33 8 ed

2 6 37 34 9 1e8

3 7 74 35 9 1ef

4 8 f2 36 10 3ef

5 9 1eb 37 10 3f1

6 10 3ed 38 10 3f9

7 11 7f7 39 11 7fb

8 3 4 40 9 1ed

9 4 c 41 8 ef

10 6 35 42 9 1ea

11 7 71 43 9 1f2

12 8 ec 44 10 3f3

13 8 ee 45 10 3f8

14 9 1ee 46 11 7f9

15 9 1f5 47 11 7fc

16 6 36 48 10 3ee

17 6 34 49 9 1ec

18 7 72 50 9 1f4

19 8 ea 51 10 3f4

20 8 f1 52 10 3f7

21 9 1e9 53 11 7f8

22 9 1f3 54 12 ffd

23 10 3f5 55 12 ffe

24 7 73 56 11 7f6

25 7 70 57 10 3f0

26 8 eb 58 10 3f2

27 8 f0 59 10 3f6

28 9 1f1 60 11 7fa

29 9 1f0 61 11 7fd

30 10 3ec 62 12 ffc

31 10 3fa 63 12 fff

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 119

Table A.9 — Spectrum Huffman Codebook 8

index length codeword
(hexadecimal)

index length codeword
(hexadecimal)

0 5 e 32 7 71

1 4 5 33 6 2b

2 5 10 34 6 2d

3 6 30 35 6 31

4 7 6f 36 7 6d

5 8 f1 37 7 70

6 9 1fa 38 8 f2

7 10 3fe 39 9 1f9

8 4 3 40 8 ef

9 3 0 41 7 68

10 4 4 42 6 33

11 5 12 43 7 6b

12 6 2c 44 7 6e

13 7 6a 45 8 ee

14 7 75 46 8 f9

15 8 f8 47 10 3fc

16 5 f 48 9 1f8

17 4 2 49 7 74

18 4 6 50 7 73

19 5 14 51 8 ed

20 6 2e 52 8 f0

21 7 69 53 8 f6

22 7 72 54 9 1f6

23 8 f5 55 9 1fd

24 6 2f 56 10 3fd

25 5 11 57 8 f3

26 5 13 58 8 f4

27 6 2a 59 8 f7

28 6 32 60 9 1f7

29 7 6c 61 9 1fb

30 8 ec 62 9 1fc

31 8 fa 63 10 3ff

ISO/IEC 13818-7:2006(E)

120 © ISO/IEC 2006 – All rights reserved

Table A.10 — Spectrum Huffman Codebook 9

index length codeword
(hexadecimal)

index length codeword
(hexadecimal)

0 1 0 85 12 fda

1 3 5 86 12 fe3

2 6 37 87 12 fe9

3 8 e7 88 13 1fe6

4 9 1de 89 13 1ff3

5 10 3ce 90 13 1ff7

6 10 3d9 91 11 7d3

7 11 7c8 92 10 3d8

8 11 7cd 93 10 3e1

9 12 fc8 94 11 7d4

10 12 fdd 95 11 7d9

11 13 1fe4 96 12 fd3

12 13 1fec 97 12 fde

13 3 4 98 13 1fdd

14 4 c 99 13 1fd9

15 6 35 100 13 1fe2

16 7 72 101 13 1fea

17 8 ea 102 13 1ff1

18 8 ed 103 13 1ff6

19 9 1e2 104 11 7d2

20 10 3d1 105 10 3d4

21 10 3d3 106 10 3da

22 10 3e0 107 11 7c7

23 11 7d8 108 11 7d7

24 12 fcf 109 11 7e2

25 12 fd5 110 12 fce

26 6 36 111 12 fdb

27 6 34 112 13 1fd8

28 7 71 113 13 1fee

29 8 e8 114 14 3ff0

30 8 ec 115 13 1ff4

31 9 1e1 116 14 3ff2

32 10 3cf 117 11 7e1

33 10 3dd 118 10 3df

34 10 3db 119 11 7c9

35 11 7d0 120 11 7d6

36 12 fc7 121 12 fca

37 12 fd4 122 12 fd0

38 12 fe4 123 12 fe5

39 8 e6 124 12 fe6

40 7 70 125 13 1feb

41 8 e9 126 13 1fef

42 9 1dd 127 14 3ff3

43 9 1e3 128 14 3ff4

44 10 3d2 129 14 3ff5

45 10 3dc 130 12 fe0

46 11 7cc 131 11 7ce

47 11 7ca 132 11 7d5

48 11 7de 133 12 fc6

49 12 fd8 134 12 fd1

50 12 fea 135 12 fe1

51 13 1fdb 136 13 1fe0

52 9 1df 137 13 1fe8

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 121

53 8 eb 138 13 1ff0

54 9 1dc 139 14 3ff1

55 9 1e6 140 14 3ff8

56 10 3d5 141 14 3ff6

57 10 3de 142 15 7ffc

58 11 7cb 143 12 fe8

59 11 7dd 144 11 7df

60 11 7dc 145 12 fc9

61 12 fcd 146 12 fd7

62 12 fe2 147 12 fdc

63 12 fe7 148 13 1fdc

64 13 1fe1 149 13 1fdf

65 10 3d0 150 13 1fed

66 9 1e0 151 13 1ff5

67 9 1e4 152 14 3ff9

68 10 3d6 153 14 3ffb

69 11 7c5 154 15 7ffd

70 11 7d1 155 15 7ffe

71 11 7db 156 13 1fe7

72 12 fd2 157 12 fcc

73 11 7e0 158 12 fd6

74 12 fd9 159 12 fdf

75 12 feb 160 13 1fde

76 13 1fe3 161 13 1fda

77 13 1fe9 162 13 1fe5

78 11 7c4 163 13 1ff2

79 9 1e5 164 14 3ffa

80 10 3d7 165 14 3ff7

81 11 7c6 166 14 3ffc

82 11 7cf 167 14 3ffd

83 11 7da 168 15 7fff

84 12 fcb

ISO/IEC 13818-7:2006(E)

122 © ISO/IEC 2006 – All rights reserved

Table A.11 — Spectrum Huffman Codebook 10

index length codeword
(hexadecimal)

index length codeword
(hexadecimal)

0 6 22 85 9 1c7

1 5 8 86 9 1ca

2 6 1d 87 9 1e0

3 6 26 88 10 3db

4 7 5f 89 10 3e8

5 8 d3 90 11 7ec

6 9 1cf 91 9 1e3

7 10 3d0 92 8 d2

8 10 3d7 93 8 cb

9 10 3ed 94 8 d0

10 11 7f0 95 8 d7

11 11 7f6 96 8 db

12 12 ffd 97 9 1c6

13 5 7 98 9 1d5

14 4 0 99 9 1d8

15 4 1 100 10 3ca

16 5 9 101 10 3da

17 6 20 102 11 7ea

18 7 54 103 11 7f1

19 7 60 104 9 1e1

20 8 d5 105 8 d4

21 8 dc 106 8 cf

22 9 1d4 107 8 d6

23 10 3cd 108 8 de

24 10 3de 109 8 e1

25 11 7e7 110 9 1d0

26 6 1c 111 9 1d6

27 4 2 112 10 3d1

28 5 6 113 10 3d5

29 5 c 114 10 3f2

30 6 1e 115 11 7ee

31 6 28 116 11 7fb

32 7 5b 117 10 3e9

33 8 cd 118 9 1cd

34 8 d9 119 9 1c8

35 9 1ce 120 9 1cb

36 9 1dc 121 9 1d1

37 10 3d9 122 9 1d7

38 10 3f1 123 9 1df

39 6 25 124 10 3cf

40 5 b 125 10 3e0

41 5 a 126 10 3ef

42 5 d 127 11 7e6

43 6 24 128 11 7f8

44 7 57 129 12 ffa

45 7 61 130 10 3eb

46 8 cc 131 9 1dd

47 8 dd 132 9 1d3

48 9 1cc 133 9 1d9

49 9 1de 134 9 1db

50 10 3d3 135 10 3d2

51 10 3e7 136 10 3cc

52 7 5d 137 10 3dc

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 123

53 6 21 138 10 3ea

54 6 1f 139 11 7ed

55 6 23 140 11 7f3

56 6 27 141 11 7f9

57 7 59 142 12 ff9

58 7 64 143 11 7f2

59 8 d8 144 10 3ce

60 8 df 145 9 1e4

61 9 1d2 146 10 3cb

62 9 1e2 147 10 3d8

63 10 3dd 148 10 3d6

64 10 3ee 149 10 3e2

65 8 d1 150 10 3e5

66 7 55 151 11 7e8

67 6 29 152 11 7f4

68 7 56 153 11 7f5

69 7 58 154 11 7f7

70 7 62 155 12 ffb

71 8 ce 156 11 7fa

72 8 e0 157 10 3ec

73 8 e2 158 10 3df

74 9 1da 159 10 3e1

75 10 3d4 160 10 3e4

76 10 3e3 161 10 3e6

77 11 7eb 162 10 3f0

78 9 1c9 163 11 7e9

79 7 5e 164 11 7ef

80 7 5a 165 12 ff8

81 7 5c 166 12 ffe

82 7 63 167 12 ffc

83 8 ca 168 12 fff

84 8 da

ISO/IEC 13818-7:2006(E)

124 © ISO/IEC 2006 – All rights reserved

Table A.12 — Spectrum Huffman Codebook 11

index length codeword
(hexadecimal)

index length codeword
(hexadecimal)

0 4 0 145 10 38d

1 5 6 146 10 398

2 6 19 147 10 3b7

3 7 3d 148 10 3d3

4 8 9c 149 10 3d1

5 8 c6 150 10 3db

6 9 1a7 151 11 7dd

7 10 390 152 8 b4

8 10 3c2 153 10 3de

9 10 3df 154 9 1a9

10 11 7e6 155 9 19b

11 11 7f3 156 9 19c

12 12 ffb 157 9 1a1

13 11 7ec 158 9 1aa

14 12 ffa 159 9 1ad

15 12 ffe 160 9 1b3

16 10 38e 161 10 38b

17 5 5 162 10 3b2

18 4 1 163 10 3b8

19 5 8 164 10 3ce

20 6 14 165 10 3e1

21 7 37 166 10 3e0

22 7 42 167 11 7d2

23 8 92 168 11 7e5

24 8 af 169 8 b7

25 9 191 170 11 7e3

26 9 1a5 171 9 1bb

27 9 1b5 172 9 1a8

28 10 39e 173 9 1a6

29 10 3c0 174 9 1b0

30 10 3a2 175 9 1b2

31 10 3cd 176 9 1b7

32 11 7d6 177 10 39b

33 8 ae 178 10 39a

34 6 17 179 10 3ba

35 5 7 180 10 3b5

36 5 9 181 10 3d6

37 6 18 182 11 7d7

38 7 39 183 10 3e4

39 7 40 184 11 7d8

40 8 8e 185 11 7ea

41 8 a3 186 8 ba

42 8 b8 187 11 7e8

43 9 199 188 10 3a0

44 9 1ac 189 9 1bd

45 9 1c1 190 9 1b4

46 10 3b1 191 10 38a

47 10 396 192 9 1c4

48 10 3be 193 10 392

49 10 3ca 194 10 3aa

50 8 9d 195 10 3b0

51 7 3c 196 10 3bc

52 6 15 197 10 3d7

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 125

53 6 16 198 11 7d4

54 6 1a 199 11 7dc

55 7 3b 200 11 7db

56 7 44 201 11 7d5

57 8 91 202 11 7f0

58 8 a5 203 8 c1

59 8 be 204 11 7fb

60 9 196 205 10 3c8

61 9 1ae 206 10 3a3

62 9 1b9 207 10 395

63 10 3a1 208 10 39d

64 10 391 209 10 3ac

65 10 3a5 210 10 3ae

66 10 3d5 211 10 3c5

67 8 94 212 10 3d8

68 8 9a 213 10 3e2

69 7 36 214 10 3e6

70 7 38 215 11 7e4

71 7 3a 216 11 7e7

72 7 41 217 11 7e0

73 8 8c 218 11 7e9

74 8 9b 219 11 7f7

75 8 b0 220 9 190

76 8 c3 221 11 7f2

77 9 19e 222 10 393

78 9 1ab 223 9 1be

79 9 1bc 224 9 1c0

80 10 39f 225 10 394

81 10 38f 226 10 397

82 10 3a9 227 10 3ad

83 10 3cf 228 10 3c3

84 8 93 229 10 3c1

85 8 bf 230 10 3d2

86 7 3e 231 11 7da

87 7 3f 232 11 7d9

88 7 43 233 11 7df

89 7 45 234 11 7eb

90 8 9e 235 11 7f4

91 8 a7 236 11 7fa

92 8 b9 237 9 195

93 9 194 238 11 7f8

94 9 1a2 239 10 3bd

95 9 1ba 240 10 39c

96 9 1c3 241 10 3ab

97 10 3a6 242 10 3a8

98 10 3a7 243 10 3b3

99 10 3bb 244 10 3b9

100 10 3d4 245 10 3d0

101 8 9f 246 10 3e3

102 9 1a0 247 10 3e5

103 8 8f 248 11 7e2

104 8 8d 249 11 7de

105 8 90 250 11 7ed

106 8 98 251 11 7f1

107 8 a6 252 11 7f9

108 8 b6 253 11 7fc

ISO/IEC 13818-7:2006(E)

126 © ISO/IEC 2006 – All rights reserved

109 8 c4 254 9 193

110 9 19f 255 12 ffd

111 9 1af 256 10 3dc

112 9 1bf 257 10 3b6

113 10 399 258 10 3c7

114 10 3bf 259 10 3cc

115 10 3b4 260 10 3cb

116 10 3c9 261 10 3d9

117 10 3e7 262 10 3da

118 8 a8 263 11 7d3

119 9 1b6 264 11 7e1

120 8 ab 265 11 7ee

121 8 a4 266 11 7ef

122 8 aa 267 11 7f5

123 8 b2 268 11 7f6

124 8 c2 269 12 ffc

125 8 c5 270 12 fff

126 9 198 271 9 19d

127 9 1a4 272 9 1c2

128 9 1b8 273 8 b5

129 10 38c 274 8 a1

130 10 3a4 275 8 96

131 10 3c4 276 8 97

132 10 3c6 277 8 95

133 10 3dd 278 8 99

134 10 3e8 279 8 a0

135 8 ad 280 8 a2

136 10 3af 281 8 ac

137 9 192 282 8 a9

138 8 bd 283 8 b1

139 8 bc 284 8 b3

140 9 18e 285 8 bb

141 9 197 286 8 c0

142 9 19a 287 9 18f

143 9 1a3 288 5 4

144 9 1b1

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 127

Table A.13 — Kaiser-Bessel window for SSR profile EIGHT_SHORT_SEQUENCE

i w(i) i w(i)

0 0.0000875914060105 16 0.7446454751465113
1 0.0009321760265333 17 0.8121892962974020
2 0.0032114611466596 18 0.8683559394406505
3 0.0081009893216786 19 0.9125649996381605
4 0.0171240286619181 20 0.9453396205809574
5 0.0320720743527833 21 0.9680864942677585
6 0.0548307856028528 22 0.9827581789763112
7 0.0871361822564870 23 0.9914756203467121
8 0.1302923415174603 24 0.9961964092194694
9 0.1848955425508276 25 0.9984956609571091
10 0.2506163195331889 26 0.9994855586984285
11 0.3260874142923209 27 0.9998533730714648
12 0.4089316830907141 28 0.9999671864476404
13 0.4959414909423747 29 0.9999948432453556
14 0.5833939894958904 30 0.9999995655238333
15 0.6674601983218376 31 0.9999999961638728

Table A.14 — Kaiser-Bessel window for SSR profile for other window sequences.

i w(i) i w(i)

0 0.0005851230124487 128 0.7110428359000029
1 0.0009642149851497 129 0.7188474364707993
2 0.0013558207534965 130 0.7265597347077880
3 0.0017771849644394 131 0.7341770687621900
4 0.0022352533849672 132 0.7416968783634273
5 0.0027342299070304 133 0.7491167073477523
6 0.0032773001022195 134 0.7564342060337386
7 0.0038671998069216 135 0.7636471334404891
8 0.0045064443384152 136 0.7707533593446514
9 0.0051974336885144 137 0.7777508661725849
10 0.0059425050016407 138 0.7846377507242818
11 0.0067439602523141 139 0.7914122257259034
12 0.0076040812644888 140 0.7980726212080798
13 0.0085251378135895 141 0.8046173857073919
14 0.0095093917383048 142 0.8110450872887550
15 0.0105590986429280 143 0.8173544143867162
16 0.0116765080854300 144 0.8235441764639875
17 0.0128638627792770 145 0.8296133044858474
18 0.0141233971318631 146 0.8355608512093652
19 0.0154573353235409 147 0.8413859912867303
20 0.0168678890600951 148 0.8470880211822968
21 0.0183572550877256 149 0.8526663589032990
22 0.0199276125319803 150 0.8581205435445334
23 0.0215811201042484 151 0.8634502346476508
24 0.0233199132076965 152 0.8686552113760616
25 0.0251461009666641 153 0.8737353715068081
26 0.0270617631981826 154 0.8786907302411250
27 0.0290689473405856 155 0.8835214188357692
28 0.0311696653515848 156 0.8882276830575707
29 0.0333658905863535 157 0.8928098814640207
30 0.0356595546648444 158 0.8972684835130879
31 0.0380525443366107 159 0.9016040675058185
32 0.0405466983507029 160 0.9058173183656508
33 0.0431438043376910 161 0.9099090252587376
34 0.0458455957104702 162 0.9138800790599416
35 0.0486537485902075 163 0.9177314696695282

ISO/IEC 13818-7:2006(E)

128 © ISO/IEC 2006 – All rights reserved

36 0.0515698787635492 164 0.9214642831859411
37 0.0545955386770205 165 0.9250796989403991
38 0.0577322144743916 166 0.9285789863994010
39 0.0609813230826460 167 0.9319635019415643
40 0.0643442093520723 168 0.9352346855155568
41 0.0678221432558827 169 0.9383940571861993
42 0.0714163171546603 170 0.9414432135761304
43 0.0751278431308314 171 0.9443838242107182
44 0.0789577503982528 172 0.9472176277741918
45 0.0829069827918993 173 0.9499464282852282
46 0.0869763963425241 174 0.9525720912004834
47 0.0911667569410503 175 0.9550965394547873
48 0.0954787380973307 176 0.9575217494469370
49 0.0999129187977865 177 0.9598497469802043
50 0.1044697814663005 178 0.9620826031668507
51 0.1091497100326053 179 0.9642224303060783
52 0.1139529881122542 180 0.9662713777449607
53 0.1188797973021148 181 0.9682316277319895
54 0.1239302155951605 182 0.9701053912729269
55 0.1291042159181728 183 0.9718949039986892
56 0.1344016647957880 184 0.9736024220549734
57 0.1398223211441467 185 0.9752302180233160
58 0.1453658351972151 186 0.9767805768831932
59 0.1510317475686540 187 0.9782557920246753
60 0.1568194884519144 188 0.9796581613210076
61 0.1627283769610327 189 0.9809899832703159
62 0.1687576206143887 190 0.9822535532154261
63 0.1749063149634756 191 0.9834511596505429
64 0.1811734433685097 192 0.9845850806232530
65 0.1875578769224857 193 0.9856575802399989
66 0.1940583745250518 194 0.9866709052828243
67 0.2006735831073503 195 0.9876272819448033
68 0.2074020380087318 196 0.9885289126911557
69 0.2142421635060113 197 0.9893779732525968
70 0.2211922734956977 198 0.9901766097569984
71 0.2282505723293797 199 0.9909269360049311
72 0.2354151558022098 200 0.9916310308941294
73 0.2426840122941792 201 0.9922909359973702
74 0.2500550240636293 202 0.9929086532976777
75 0.2575259686921987 203 0.9934861430841844
76 0.2650945206801527 204 0.9940253220113651
77 0.2727582531907993 205 0.9945280613237534
78 0.2805146399424422 206 0.9949961852476154
79 0.2883610572460804 207 0.9954314695504363
80 0.2962947861868143 208 0.9958356402684387
81 0.3043130149466800 209 0.9962103726017252
82 0.3124128412663888 210 0.9965572899760172
83 0.3205912750432127 211 0.9968779632693499
84 0.3288452410620226 212 0.9971739102014799
85 0.3371715818562547 213 0.9974465948831872
86 0.3455670606953511 214 0.9976974275220812
87 0.3540283646950029 215 0.9979277642809907
88 0.3625521080463003 216 0.9981389072844972
89 0.3711348353596863 217 0.9983321047686901
90 0.3797730251194006 218 0.9985085513687731
91 0.3884630932439016 219 0.9986693885387259
92 0.3972013967475546 220 0.9988157050968516
93 0.4059842374986933 221 0.9989485378906924
94 0.4148078660689724 222 0.9990688725744943
95 0.4236684856687616 223 0.9991776444921379

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 129

96 0.4325622561631607 224 0.9992757396582338
97 0.4414852981630577 225 0.9993639958299003
98 0.4504336971855032 226 0.9994432036616085
99 0.4594035078775303 227 0.9995141079353859
100 0.4683907582974173 228 0.9995774088586188
101 0.4773914542472655 229 0.9996337634216871
102 0.4864015836506502 230 0.9996837868076957
103 0.4954171209689973 231 0.9997280538466377
104 0.5044340316502417 232 0.9997671005064359
105 0.5134482766032377 233 0.9998014254134544
106 0.5224558166913167 234 0.9998314913952471
107 0.5314526172383208 235 0.9998577270385304
108 0.5404346525403849 236 0.9998805282555989
109 0.5493979103766972 237 0.9999002598526793
110 0.5583383965124314 238 0.9999172570940037
111 0.5672521391870222 239 0.9999318272557038
112 0.5761351935809411 240 0.9999442511639580
113 0.5849836462541291 241 0.9999547847121726
114 0.5937936195492526 242 0.9999636603523446
115 0.6025612759529649 243 0.9999710885561258
116 0.6112828224083939 244 0.9999772592414866
117 0.6199545145721097 245 0.9999823431612708
118 0.6285726610088878 246 0.9999864932503106
119 0.6371336273176413 247 0.9999898459281599
120 0.6456338401819751 248 0.9999925223548691
121 0.6540697913388968 249 0.9999946296375997
122 0.6624380414593221 250 0.9999962619864214
123 0.6707352239341151 251 0.9999975018180320
124 0.6789580485595255 252 0.9999984208055542
125 0.6871033051160131 253 0.9999990808746198
126 0.6951678668345944 254 0.9999995351446231
127 0.7031486937449871 255 0.9999998288155155

ISO/IEC 13818-7:2006(E)

130 © ISO/IEC 2006 – All rights reserved

Annex B
(informative)

Information on Unused Codebooks

As specified by the normative part of this standard, the AAC decoder does not make use of codebooks #12
and #13. However, if desired, a decoder may use these codebooks to extend its functionality in a way that is
consistent with other MPEG standards like ISO/IEC 14496-3 which use these particular codebooks to indicate
coding by extended coding methods.

As an example, the syntax in subclause 6.3 would change to

Table B.1 — Extended syntax for scale_factor_data()

Syntax No. Of bits Mnemonic

scale_factor_data()
{
 noise_pcm_flag = 1;
 for (g = 0; g < num_window_groups; g++) {
 for (sfb = 0; sfb < max_sfb; sfb++) {
 if (sfb_cb[g][sfb] != ZERO_HCB) {
 if (is_intensity(g,sfb))
 hcod_sf[dpcm_is_position[g][sfb]]; 1..19 vlclbf
 else if (sfb_cb[g][sfb] == 13)
 if (noise_pcm_flag) {
 noise_pcm_flag = 0;
 dpcm_noise_nrg[g][sfb]; 9 uimsbf
 } else
 hcod_sf[dpcm_noise_nrg[g][sfb]]; 1..19 vlclbf
 else
 hcod_sf[dpcm_sf[g][sfb]]; 1..19 vlclbf
 }
 }
 }
}

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 131

Annex C
(informative)

Encoder

C.1 Psychoacoustic Model

C.1.1 General

This annex presents the general Psychoacoustic Model for the AAC encoder. The psychoacoustic model
calculates the maximum distortion energy which is masked by the signal energy. This energy is called
threshold. The threshold generation process has three inputs. They are:

1. The shift length for the threshold calculation process is called iblen. This iblen must remain constant over
any particular application of the threshold calculation process. Since it is necessary to calculate
thresholds for two different shift lengths, two processes, each running with a fixed shift length, are
necessary. For long FFT iblen = 1024, for short FFT iblen = 128.

2. For each FFT type the newest iblen samples of the signal, with the samples delayed (either in the
filterbank or psychoacoustic calculation) such that the window of the psychoacoustic calculation is
centered in the time-window of the codec time/frequency transform .

3. The sampling rate. There are sets of tables provided for the standard sampling rates. Sampling rate, just
as iblen, must necessarily remain constant over one implementation of the threshold calculation process.

The output from the psychoacoustic model is:

1. a set of Signal-to-Mask Ratios and thresholds, which are adapted to the encoder as described below,

2. the delayed time domain data (PCM samples) , which are used by the MDCT,

3. the block type for the MDCT (long, start, stop or short type)

4. an estimation of how many bits should be used for encoding in addition to the average available bits.

The delay of the PCM samples is necessary , because if the switch decision algorithm detects an attack, so
that short blocks have to be used for the actual frame, the long block before the short blocks has to be
‘patched’ to a start block type in this case..

Before running the model initially, the array used to hold the preceding FFT source data window and the
arrays used to hold r(w) and f(w) should be zeroed to provide a known starting point.

C.1.2 Comments on Notation

Throughout this threshold calculation process, three indices for data values are used. These are:

w- indicates that the calculation is indexed by frequency in the FFT spectral line domain. An
index of 0 corresponds to the DC term and an index of 1023 corresponds to the spectral line
at the Nyquist frequency.

b - indicates that the calculation is indexed in the threshold calculation partition domain. In the
case where the calculation includes a convolution or sum in the threshold calculation partition
domain, bb will be used as the summation variable. Partition numbering starts at 0.

n - indicates that the calculation is indexed in the coder scalefactor band domain. An index of 0
corresponds to the lowest scalefactor band.

ISO/IEC 13818-7:2006(E)

132 © ISO/IEC 2006 – All rights reserved

C.1.3 The "Spreading Function"

Several points in the following description refer to the "spreading function". It is calculated by the following
method:

 if j >= i
 tmpx = 3.0 (j-i)
 else
 tmpx = 1.5(j-i)

Where i is the Bark value of the signal being spread, j is the Bark value of the band being spread into, and
tmpx is a temporary variable.

 tmpz = 8 * minimum ((tmpx-0.5)2-2(tmpx-0.5),0)
Where tmpz is a temporary variable, and minimum (a , b) is a function returning the more negative of a or b.

 tmpy = 15.811389 + 7.5(tmpx + 0.474)-17.5(1.0+(tmpx + 0.474)2)0.5

where tmpy is another temporary variable.

 if (tmpy <- 100) then {sprdngf (i , j) = 0} else {sprdngf (i , j) = 10^((tmpz + tmpy)/10)}

C.1.4 Steps in Threshold Calculation

The following are the necessary steps for the calculation of SMR(n) and xmin(n) used in the coder for long
and short FFT.

1. Reconstruct 2 * iblen samples of the input signal.

iblen new samples are made available at every call to the threshold generator. The threshold generator
must store 2 * iblen - iblen samples, and concatenate those samples to accurately reconstruct 2 * iblen
consecutive samples of the input signal, s(i), where i represents the index, 0 <= i < 2 * iblen , of the
current input stream.

2. Calculate the complex spectrum of the input signal.

First, s(i) is windowed by a Hann window, i.e.

 sw(i) = s(i) * (0.5-0.5 * cos((pi *(i+0.5))/ iblen).
Second, a standard forward FFT of sw(i) calculated.Third, the polar representation of the transform is
calculated. r(w) and f(w) represent the magnitude and phase components of the transformed sw(i),
respectively.

3. Calculate a predicted r(w) and f(w).

A predicted magnitude, r_pred(w) and phase, f_pred(w) are calculated from the preceding two threshold
calculation blocks r(w) and f(w):

 r_pred(w) = 2.0 * r (t-1)-r(t-2)
 f_pred(w) =2.0 * f(t-1)-f (t-2)

where t represents the current block number, t-1 indexes the previous block's data, and t-2 indexes the
data from the threshold calculation block before that.

4. Calculate the unpredictability measure c(w).

 c(w) = (((r(w) * cos(f(w)) - r_pred(w) * cos(f_pred(w)))^2 + (r(w) *
sin(f(w)) - r_pred(w)
 * sin(f_pred(w)))^2)^0.5) / (r(w) + abs(r_pred(w))

This formula is used for each of the short blocks with the short FFT, for long blocks for the first 6 lines the
unpredictability measure is calculated from the long FFT, for the remaining lines the minimum of the

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 133

unpredictability of all short FFT’s is used. If calculation power should be saved, the unpredictability of the
upper part of the spectrum can be set to 0.4.

5. Calculate the energy and unpredictability in the threshold calculation partitions.

The energy in each partition, e(b), is:

 do for each partition b:
 e(b) = 0
 do from lower index to upper index w of partition b
 e(b) = e(b) + r(w)^2
 end do
 end do

(e(b) is used in the M/S-module (see subclause C.6.1): e(b) is equal to Xengy with ‘X’ = [R,L,M,S]) and
the weighted unpredictability, c(b), is:

 do for each partition b:
 c(b) = 0
 do from lower index to upper index w of partition b
 c(b) = c(b) + r(w)^2 * c(w)
 end do
 end do

The threshold calculation partitions provide a resolution of approximately either one FFT line or 1/3 critical
band, whichever is wider. At low frequencies, a single line of the FFT will constitute a calculation partition.
At high frequencies, many lines will be combined into one calculation partition. A set of partition values is
provided for each of the three sampling rates in Table C.1 to Table C.24. These Table elements will be
used in the threshold calculation process. There are several elements in each Table entry:

1) The index of the calculation partition, b.

2) The lowest frequency line in the partition, w_low(b).

3) The highest frequency line in the partition, w_high(b)

4) The median bark value of the partition, bval(b)

5) The threshold in quiet qsthr(b)

6) A largest value of b, bmax, equal to the largest index, exists for each sampling rate.

6. Convolve the partitioned energy and unpredictability with the spreading function.

 for each partition b:
 ecb(b) = 0
 do for each partition bb:
 ecb(b) = ecb(b) +e(bb)* sprdngf(bval(bb),bval(b))
 end do
 end do
 do for each partition b:
 ct(b) = 0
 do for each partition bb:
 ct(b) = ct(b) +c(bb)* sprdngf(bval(bb),bval(b))
 end do
 end do

Because ct(b) is weighted by the signal energy, it must be renormalized to cb(b)

. cb(b) = ct(b) / ecb(b)

ISO/IEC 13818-7:2006(E)

134 © ISO/IEC 2006 – All rights reserved

Just as this, due to the non-normalized nature of the spreading function, ecbb should be renormalized and the

normalized energy enb, calculated.

 en(b) = ecb(b) * rnorm(b)

The normalization coefficient, rnorm(b). is:

do for each partition b
 tmp(b) = 0
 do for each partition bb
 tmp(b) = tmp(b) + sprdngf(bval(bb),bval(b))
 end do
 rnorm(b) = 1/ tmp(b)
end do

7. Convert cb(b) to tb(b) , the tonality index.

 tb(b) = -0.299 – 0.43 loge (cb(b))

Each tb(b) is limited to the range of 0<tb(b) <1.

8. Calculate the required SNR in each partition.

NMT(b) = 6 dB for all b. NMT(b) is the value for noise masking tone (in dB) for the partition. TMN(b) = 18
dB for all b. TMN(b) is the value for tone masking noise (in dB) .The required signal to noise ratio,
SNR(b), is:

 SNR(b) = tb(b) * TMN(b) + (1-tb(b)) * NMT(b)

9. Calculate the power ratio.

The power ratio, bc(b) , is:

 bc(b) =10^(-SNR(b) /10)

10. Calculation of actual energy threshold, nb(b) .

 nb(b) = en(b) * bc(b)
nb(b) is also used in the M/S-module (see clause 12): nb(b) is equal to Xthr with ‘X’=[R,L,M,S]

11. Pre-echo control and threshold in quiet.

To avoid pre-echoes the pre-echo control is calculated for short and long FFT, the threshold in quiet is
also considered here:

nb_l(b) is the threshold of partition b for the last block , qsthr(b) is the threshold in quiet . The dB values of
qsthr(b) shown in Figure C.1

Table C.1 to Table C.24 are relative to the level that a sine wave of + or - ½ lsb has in the FFT used for
threshold calculation. The dB values must be converted into the energy domain after considering the FFT
normalization actually used.

 nb(b) = max (qsthr(b), min (nb(b), nb_l(b)*rpelev))
rpelev is set to ‘1’ for short blocks and ‘2’ for long blocks

12. The PE is calculated for each block type from the ratio e(b) / nb (b) , where nb(b) is the threshold and e(b)
is the energy for each threshold partition.

 PE = 0
 do for threshold partition b
 PE = PE - (w_high(b)-w_low(b)) * log10 (nb(b) / (e(b) +1))
 end do

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 135

13. The decision, whether long or short block type is used for encoding is made according to this pseudo
code.

 if PE for long block is greater than switch_pe then
 coding_block_type = short_block_type
 else
 coding_block_type = long_block_type
 end if
 if (coding_block_type == short_block_type) and
 (last_coding_block_type == long_type) then
 last coding block type = start_type
 else
 last_coding_block_type = short_type

The last four lines are necessary since there is no combined stop/start block type in AAC. switch_pe is a
implementation dependend constant

14. Calculate the signal-to-mask ratios, SMR(n) and the codec threshold xmin(n).

Table 45 to Table 57 shows:

1. The index, swb, of the coder partition called scalefactor band.

2. The offset of mdct line for the scalefactor band swb_offset_long/short_window.

we define the following variable :

 n = swb
 w_low(n) = swb_offset_long/short_window(n)
 w_high(n) = swb_offset_long/short_window(n+1) – 1

The FFT energy in the scalefactor band, epart(n), is:

 do for each scalefactor band n
 epart(n) = 0
 do for w = lower index w_low(n) to n = upper index w_high(n)
 epart(n) = epart (n) + r(w)^2
 end do
 end do

the threshold for one line of the spectrum is calculated according to:

 do for each threshold partition b
 thr(all line_indices in this partition b)=
 thr (w_low(b),...,w_high(b)) = nb(b) / (w_high(b)+1-w_low(b))
 end do

the noise level in the scalefactor band on FFT level , npart(n) is calculated as:

 do for each scalefactor band n
 npart(n) = minimum(thr(w_low(n)),..., thr(w_high(n)))
 * (w_high(n)+1-w_low(n))
 end do

Where, in this case, minimum (a,...,z) is a function returning the smallest positive argument of the
arguments a...z.

The ratios to be sent to the quantization module, SMR(n), are calculated as:

 SMR(n) = epart(n) / npart(n)
For the calculation of coder thresholds xmin(n) the MDCT energy for each scalefactor band is calculated:

 do for all scalefactor bands n
 codec_e(n) = 0
 do for lower index i to higher index i of this scalefactor band
 codec_e(n) = codec_e(n) +(mdct_line(i))^2
 end do
 end do

ISO/IEC 13818-7:2006(E)

136 © ISO/IEC 2006 – All rights reserved

Then xmin(n), the maximum allowed error energy on MDCT level, can be calculated according to this
formula:

 xmin (n) = npart(n) * codec_e(n) / epart (n)

15. Calculate the bit allocation out of the psychoacoustic entropy (PE).
bit_allocation = pew1* PE + pew2*sqrt(PE);

for long blocks the constants are defined as:

 pew1 = 0.3 , pew2 = 6.0
for short blocks the PE of the eight short blocks is summed up and the constants are :

 pew1 = 0.6 , pew2 = 24
then bit_allocation is limited to 0<bit_allocation < 3000 and more_bits is calculated :

 more_bits = bit_allocation - (mean_bits - side_info_bits)

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 137

 calculate unpredictability measure cw

FFT (long and short)

(windowsize long 2048

windowsize short 256)

calculate threshold (part 1)

perceptual entropy

 > switch_pe ?

calculate perceptual entropy

input buffer

delay compensation for

filterbank

YN

use

short blocks

use

long blocks

calculate threshold (part 2) calculate threshold for short blocks

output buffer: blocktype, threshold (ratio), perceptual entropy, time signal

delay threshold (ratio), blocktype, perceptual entropy by one block
if (window_sequence(n) == EIGHT_SHORT_SEQUENCE &&

 window_sequence(n-1) == ONLY_LONG_SEQUENCE)

 window_sequence(n-1) = LONG_START_SEQUENCE;

Figure C.1 — Block diagram psychoacoustic model

ISO/IEC 13818-7:2006(E)

138 © ISO/IEC 2006 – All rights reserved

Table C.1 — Psychoacoustic parameters for 8 kHz long FFT

index w_low w_high width bval qsthr

0 0 8 9 0.18 46.82

1 9 17 9 0.53 46.82

2 18 26 9 0.89 46.82

3 27 35 9 1.24 41.82

4 36 44 9 1.59 41.82

5 45 53 9 1.94 41.82

6 54 62 9 2.29 38.82

7 63 71 9 2.63 38.82

8 72 80 9 2.98 38.82

9 81 89 9 3.31 33.82

10 90 98 9 3.65 33.82

11 99 108 10 3.99 34.28

12 109 118 10 4.35 32.28

13 119 128 10 4.71 32.28

14 129 138 10 5.05 32.28

15 139 148 10 5.39 32.28

16 149 159 11 5.74 32.69

17 160 170 11 6.10 32.69

18 171 181 11 6.45 32.69

19 182 192 11 6.79 32.69

20 193 204 12 7.13 33.07

21 205 216 12 7.48 33.07

22 217 228 12 7.82 33.07

23 229 241 13 8.17 33.42

24 242 254 13 8.51 33.42

25 255 268 14 8.85 33.74

26 269 282 14 9.20 33.74

27 283 297 15 9.54 34.04

28 298 312 15 9.88 34.04

29 313 328 16 10.22 34.32

30 329 345 17 10.56 34.58

31 346 363 18 10.91 34.83

32 364 381 18 11.25 34.83

33 382 400 19 11.58 35.06

34 401 420 20 11.91 35.29

35 421 441 21 12.24 35.50

36 442 464 23 12.58 35.89

37 465 488 24 12.92 36.08

38 489 514 26 13.26 36.43

39 515 541 27 13.59 36.59

40 542 570 29 13.93 36.90

41 571 601 31 14.26 37.19

42 602 634 33 14.60 37.46

43 635 670 36 14.93 37.84

44 671 708 38 15.27 38.07

45 709 749 41 15.60 38.40

46 750 793 44 15.93 38.71

47 794 841 48 16.26 39.09

48 842 893 52 16.60 39.44

49 894 949 56 16.93 39.76

50 950 1009 60 17.26 40.06

51 1010 1023 14 17.47 33.74

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 139

Table C.2 — Psychoacoustic parameters for 8 kHz short FFT

index w_low w_high width bval qsthr

0 0 1 2 0.32 30.29

1 2 3 2 0.95 30.29

2 4 5 2 1.57 25.29

3 6 7 2 2.19 22.29

4 8 9 2 2.80 22.29

5 10 11 2 3.40 17.29

6 12 13 2 3.99 17.29

7 14 15 2 4.56 15.29

8 16 17 2 5.12 15.29

9 18 19 2 5.66 15.29

10 20 21 2 6.18 15.29

11 22 23 2 6.68 15.29

12 24 25 2 7.16 15.29

13 26 27 2 7.63 15.29

14 28 29 2 8.07 15.29

15 30 31 2 8.50 15.29

16 32 33 2 8.90 15.29

17 34 35 2 9.29 15.29

18 36 37 2 9.67 15.29

19 38 39 2 10.03 15.29

20 40 41 2 10.37 15.29

21 42 44 3 10.77 17.05

22 45 47 3 11.23 17.05

23 48 50 3 11.66 17.05

24 51 53 3 12.06 17.05

25 54 56 3 12.44 17.05

26 57 59 3 12.79 17.05

27 60 63 4 13.18 18.30

28 64 67 4 13.59 18.30

29 68 71 4 13.97 18.30

30 72 75 4 14.32 18.30

31 76 80 5 14.69 19.27

32 81 85 5 15.07 19.27

33 86 90 5 15.42 19.27

34 91 96 6 15.77 20.06

35 97 102 6 16.13 20.06

36 103 109 7 16.49 20.73

37 110 116 7 16.85 20.73

38 117 124 8 17.20 21.31

39 125 127 3 17.44 17.05

ISO/IEC 13818-7:2006(E)

140 © ISO/IEC 2006 – All rights reserved

Table C.3 — Psychoacoustic parameters for 11.025 kHz long FFT

index w_low w_high width bval qsthr

0 0 6 7 0.19 45.73

1 7 13 7 0.57 45.73

2 14 20 7 0.95 45.73

3 21 27 7 1.33 40.73

4 28 34 7 1.71 40.73

5 35 41 7 2.08 37.73

6 42 48 7 2.45 37.73

7 49 55 7 2.82 37.73

8 56 62 7 3.18 32.73

9 63 69 7 3.54 32.73

10 70 76 7 3.89 32.73

11 77 83 7 4.24 30.73

12 84 90 7 4.59 30.73

13 91 97 7 4.92 30.73

14 98 105 8 5.28 31.31

15 106 113 8 5.65 31.31

16 114 121 8 6.01 31.31

17 122 129 8 6.36 31.31

18 130 137 8 6.70 31.31

19 138 146 9 7.06 31.82

20 147 155 9 7.42 31.82

21 156 164 9 7.77 31.82

22 165 173 9 8.11 31.82

23 174 183 10 8.46 32.28

24 184 193 10 8.82 32.28

25 194 203 10 9.16 32.28

26 204 214 11 9.50 32.69

27 215 225 11 9.85 32.69

28 226 237 12 10.19 33.07

29 238 249 12 10.54 33.07

30 250 262 13 10.88 33.42

31 263 275 13 11.22 33.42

32 276 289 14 11.56 33.74

33 290 304 15 11.90 34.04

34 305 320 16 12.24 34.32

35 321 337 17 12.59 34.58

36 338 355 18 12.94 34.83

37 356 374 19 13.28 35.06

38 375 394 20 13.62 35.29

39 395 415 21 13.96 35.50

40 416 438 23 14.29 35.89

41 439 462 24 14.63 36.08

42 463 488 26 14.96 36.43

43 489 516 28 15.29 36.75

44 517 546 30 15.63 37.05

45 547 579 33 15.96 37.46

46 580 614 35 16.30 37.72

47 615 652 38 16.63 38.07

48 653 693 41 16.97 38.40

49 694 737 44 17.30 38.71

50 738 785 48 17.64 39.09

51 786 836 51 17.97 39.35

52 837 891 55 18.30 39.68

53 892 950 59 18.64 39.98

54 951 1014 64 18.97 40.34

55 1015 1023 9 19.16 31.82

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 141

Table C.4 — Psychoacoustic parameters for 11.025 kHz short FFT

index w_low w_high width bval qsthr

0 0 0 1 0.00 27.28

1 1 1 1 0.44 27.28

2 2 2 1 0.87 27.28

3 3 3 1 1.30 22.28

4 4 4 1 1.73 22.28

5 5 5 1 2.16 19.28

6 6 6 1 2.58 19.28

7 7 7 1 3.00 14.28

8 8 8 1 3.41 14.28

9 9 9 1 3.82 14.28

10 10 10 1 4.22 12.28

11 11 11 1 4.61 12.28

12 12 12 1 4.99 12.28

13 13 13 1 5.37 12.28

14 14 14 1 5.74 12.28

15 15 15 1 6.10 12.28

16 16 16 1 6.45 12.28

17 17 17 1 6.79 12.28

18 18 19 2 7.44 15.29

19 20 21 2 8.05 15.29

20 22 23 2 8.64 15.29

21 24 25 2 9.19 15.29

22 26 27 2 9.70 15.29

23 28 29 2 10.19 15.29

24 30 31 2 10.65 15.29

25 32 33 2 11.08 15.29

26 34 35 2 11.48 15.29

27 36 37 2 11.86 15.29

28 38 39 2 12.22 15.29

29 40 42 3 12.64 17.05

30 43 45 3 13.10 17.05

31 46 48 3 13.53 17.05

32 49 51 3 13.93 17.05

33 52 54 3 14.30 17.05

34 55 58 4 14.69 18.30

35 59 62 4 15.11 18.30

36 63 66 4 15.49 18.30

37 67 70 4 15.84 18.30

38 71 75 5 16.21 19.27

39 76 80 5 16.58 19.27

40 81 85 5 16.92 19.27

41 86 91 6 17.27 20.06

42 92 97 6 17.62 20.06

43 98 104 7 17.97 20.73

44 105 111 7 18.32 20.73

45 112 119 8 18.67 21.31

46 120 127 8 19.02 21.31

ISO/IEC 13818-7:2006(E)

142 © ISO/IEC 2006 – All rights reserved

Table C.5 — Psychoacoustic parameters for 12 kHz long FFT

index w_low w_high width bval qsthr

0 0 5 6 0.18 45.06

1 6 11 6 0.53 45.06

2 12 17 6 0.89 45.06

3 18 23 6 1.24 40.06

4 24 29 6 1.59 40.06

5 30 35 6 1.94 40.06

6 36 41 6 2.29 37.06

7 42 47 6 2.63 37.06

8 48 53 6 2.98 37.06

9 54 59 6 3.31 32.06

10 60 65 6 3.65 32.06

11 66 72 7 4.00 30.73

12 73 79 7 4.38 30.73

13 80 86 7 4.75 30.73

14 87 93 7 5.11 30.73

15 94 100 7 5.47 30.73

16 101 107 7 5.82 30.73

17 108 114 7 6.15 30.73

18 115 122 8 6.51 31.31

19 123 130 8 6.88 31.31

20 131 138 8 7.24 31.31

21 139 146 8 7.58 31.31

22 147 154 8 7.92 31.31

23 155 163 9 8.27 31.82

24 164 172 9 8.62 31.82

25 173 181 9 8.96 31.82

26 182 191 10 9.31 32.28

27 192 201 10 9.66 32.28

28 202 212 11 10.01 32.69

29 213 223 11 10.36 32.69

30 224 235 12 10.71 33.07

31 236 247 12 11.06 33.07

32 248 260 13 11.41 33.42

33 261 273 13 11.75 33.42

34 274 287 14 12.09 33.74

35 288 302 15 12.43 34.04

36 303 318 16 12.77 34.32

37 319 335 17 13.11 34.58

38 336 353 18 13.46 34.83

39 354 372 19 13.80 35.06

40 373 392 20 14.13 35.29

41 393 414 22 14.47 35.70

42 415 437 23 14.81 35.89

43 438 462 25 15.14 36.26

44 463 489 27 15.48 36.59

45 490 518 29 15.81 36.90

46 519 549 31 16.15 37.19

47 550 583 34 16.48 37.59

48 584 619 36 16.82 37.84

49 620 658 39 17.15 38.19

50 659 700 42 17.48 38.51

51 701 745 45 17.81 38.81

52 746 794 49 18.14 39.18

53 795 847 53 18.48 39.52

54 848 904 57 18.81 39.83

55 905 965 61 19.15 40.13

56 966 1023 58 19.47 39.91

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 143

Table C.6 — Psychoacoustic parameters for 12 kHz short FFT

index w_low w_high width bval qsthr

0 0 0 1 0.00 27.28

1 1 1 1 0.47 27.28

2 2 2 1 0.95 27.28

3 3 3 1 1.42 22.28

4 4 4 1 1.88 22.28

5 5 5 1 2.35 19.28

6 6 6 1 2.81 19.28

7 7 7 1 3.26 14.28

8 8 8 1 3.70 14.28

9 9 9 1 4.14 12.28

10 10 10 1 4.57 12.28

11 11 11 1 4.98 12.28

12 12 12 1 5.39 12.28

13 13 13 1 5.79 12.28

14 14 14 1 6.18 12.28

15 15 15 1 6.56 12.28

16 16 16 1 6.93 12.28

17 17 17 1 7.28 12.28

18 18 18 1 7.63 12.28

19 19 20 2 8.28 15.29

20 21 22 2 8.90 15.29

21 23 24 2 9.48 15.29

22 25 26 2 10.02 15.29

23 27 28 2 10.53 15.29

24 29 30 2 11.00 15.29

25 31 32 2 11.45 15.29

26 33 34 2 11.86 15.29

27 35 36 2 12.25 15.29

28 37 38 2 12.62 15.29

29 39 40 2 12.96 15.29

30 41 43 3 13.36 17.05

31 44 46 3 13.80 17.05

32 47 49 3 14.21 17.05

33 50 52 3 14.59 17.05

34 53 55 3 14.94 17.05

35 56 59 4 15.32 18.30

36 60 63 4 15.71 18.30

37 64 67 4 16.08 18.30

38 68 72 5 16.45 19.27

39 73 77 5 16.83 19.27

40 78 82 5 17.19 19.27

41 83 88 6 17.54 20.06

42 89 94 6 17.90 20.06

43 95 101 7 18.26 20.73

44 102 108 7 18.62 20.73

45 109 116 8 18.97 21.31

46 117 124 8 19.32 21.31

47 125 127 3 19.55 17.05

ISO/IEC 13818-7:2006(E)

144 © ISO/IEC 2006 – All rights reserved

Table C.7 — Psychoacoustic parameters for 16 kHz long FFT

index w_low w_high width bval qsthr

0 0 4 5 0.20 43.30

1 5 9 5 0.59 43.10

2 10 14 5 0.99 38.30

3 15 19 5 1.38 38.10

4 20 24 5 1.77 38.00

5 25 29 5 2.16 35.10

6 30 34 5 2.54 35.30

7 35 39 5 2.92 30.00

8 40 44 5 3.29 30.00

9 45 49 5 3.66 28.30

10 50 54 5 4.03 28.30

11 55 59 5 4.39 28.30

12 60 64 5 4.74 28.30

13 65 69 5 5.09 28.30

14 70 74 5 5.43 28.30

15 75 80 6 5.79 28.30

16 81 86 6 6.18 28.30

17 87 92 6 6.56 28.00

18 93 98 6 6.92 29.27

19 99 104 6 7.28 29.27

20 105 110 6 7.63 29.27

21 111 116 6 7.96 29.27

22 117 123 7 8.31 29.27

23 124 130 7 8.68 29.06

24 131 137 7 9.03 30.06

25 138 144 7 9.37 30.06

26 145 152 8 9.71 30.06

27 153 160 8 10.07 30.73

28 161 168 8 10.41 30.73

29 169 177 9 10.75 30.73

30 178 186 9 11.10 31.31

31 187 196 10 11.45 31.31

32 197 206 10 11.80 31.82

33 207 217 11 12.14 31.82

34 218 228 11 12.48 32.28

35 229 240 12 12.82 32.28

36 241 253 13 13.16 32.69

37 254 267 14 13.51 32.69

38 268 282 15 13.86 33.07

39 283 298 16 14.21 33.46

40 299 315 17 14.56 33.82

41 316 333 18 14.90 34.12

42 334 352 19 15.24 34.42

43 353 373 21 15.58 34.68

44 374 395 22 15.91 35.15

45 396 419 24 16.25 35.32

46 420 445 26 16.58 35.73

47 446 473 28 16.92 35.91

48 474 503 30 17.25 36.42

49 504 536 33 17.59 36.75

50 537 571 35 17.93 37.11

51 572 609 38 18.26 37.34

52 610 650 41 18.60 37.63

53 651 694 44 18.94 38.12

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 145

54 695 741 47 19.27 38.17

55 742 791 50 19.60 41.52

56 792 845 54 19.94 41.84

57 846 903 58 20.27 42.13

58 904 965 62 20.61 44.41

59 966 1023 58 20.92 44.87

Table C.8 — Psychoacoustic parameters for 16 kHz short FFT

index w_low w_high width bval qsthr

0 0 0 1 0.00 27.28

1 1 1 1 0.63 27.28

2 2 2 1 1.26 22.28

3 3 3 1 1.88 22.28

4 4 4 1 2.50 19.28

5 5 5 1 3.11 14.28

6 6 6 1 3.70 14.28

7 7 7 1 4.28 12.28

8 8 8 1 4.85 12.28

9 9 9 1 5.39 12.28

10 10 10 1 5.92 12.28

11 11 11 1 6.43 12.28

12 12 12 1 6.93 12.28

13 13 13 1 7.40 12.28

14 14 14 1 7.85 12.28

15 15 15 1 8.29 12.28

16 16 16 1 8.70 12.28

17 17 17 1 9.10 12.28

18 18 18 1 9.49 12.28

19 19 19 1 9.85 12.28

20 20 20 1 10.20 12.28

21 21 22 2 10.85 15.29

22 23 24 2 11.44 15.29

23 25 26 2 11.99 15.29

24 27 28 2 12.50 15.29

25 29 30 2 12.96 15.29

26 31 32 2 13.39 15.29

27 33 34 2 13.78 15.29

28 35 36 2 14.15 15.29

29 37 39 3 14.57 17.05

30 40 42 3 15.03 17.05

31 43 45 3 15.45 17.05

32 46 48 3 15.84 17.05

33 49 51 3 16.19 17.05

34 52 55 4 16.57 18.30

35 56 59 4 16.97 18.30

36 60 63 4 17.33 18.30

37 64 68 5 17.71 19.27

38 69 73 5 18.09 19.27

39 74 78 5 18.44 19.27

40 79 84 6 18.80 20.06

41 85 90 6 19.17 20.06

42 91 97 7 19.53 20.73

43 98 104 7 19.89 20.73

44 105 112 8 20.25 24.31

45 113 120 8 20.61 24.31

46 121 127 7 20.92 23.73

ISO/IEC 13818-7:2006(E)

146 © ISO/IEC 2006 – All rights reserved

Table C.9 — Psychoacoustic parameters for 22.05 kHz long FFT

index w_low w_high width bval qsthr

0 0 3 4 0.22 43.30

1 4 7 4 0.65 43.30

2 8 11 4 1.09 38.30

3 12 15 4 1.52 38.30

4 16 19 4 1.95 38.30

5 20 23 4 2.37 35.30

6 24 27 4 2.79 35.30

7 28 31 4 3.21 30.30

8 32 35 4 3.62 30.30

9 36 39 4 4.02 28.30

10 40 43 4 4.41 28.30

11 44 47 4 4.80 28.30

12 48 51 4 5.18 28.30

13 52 55 4 5.55 28.30

14 56 59 4 5.92 28.30

15 60 63 4 6.27 28.30

16 64 67 4 6.62 28.30

17 68 71 4 6.95 28.30

18 72 76 5 7.32 29.27

19 77 81 5 7.71 29.27

20 82 86 5 8.10 29.27

21 87 91 5 8.46 29.27

22 92 96 5 8.82 29.27

23 97 101 5 9.16 29.27

24 102 107 6 9.52 30.06

25 108 113 6 9.89 30.06

26 114 119 6 10.25 30.06

27 120 125 6 10.59 30.06

28 126 132 7 10.95 30.73

29 133 139 7 11.31 30.73

30 140 146 7 11.65 30.73

31 147 154 8 12.00 31.31

32 155 162 8 12.35 31.31

33 163 171 9 12.70 31.82

34 172 180 9 13.05 31.82

35 181 190 10 13.40 32.28

36 191 200 10 13.74 32.28

37 201 211 11 14.07 32.69

38 212 223 12 14.41 33.07

39 224 236 13 14.76 33.42

40 237 250 14 15.11 33.74

41 251 265 15 15.46 34.04

42 266 281 16 15.80 34.32

43 282 298 17 16.14 34.58

44 299 317 19 16.48 35.06

45 318 337 20 16.82 35.29

46 338 359 22 17.16 35.70

47 360 382 23 17.50 35.89

48 383 407 25 17.84 36.26

49 408 434 27 18.17 36.59

50 435 463 29 18.51 36.90

51 464 494 31 18.84 37.19

52 495 527 33 19.17 37.46

53 528 563 36 19.51 37.84

54 564 601 38 19.84 38.07

55 602 642 41 20.17 41.40

56 643 686 44 20.50 41.71

57 687 733 47 20.84 42.00

58 734 784 51 21.17 44.35

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 147

59 785 839 55 21.50 44.68

60 840 898 59 21.84 44.98

61 899 962 64 22.17 50.34

62 963 1023 61 22.48 50.13

Table C.10 — Psychoacoustic parameters for 22.05 kHz short FFT

index w_low w_high width bval qsthr

0 0 0 1 0.00 27.28

1 1 1 1 0.87 27.28

2 2 2 1 1.73 22.28

3 3 3 1 2.58 19.28

4 4 4 1 3.41 14.28

5 5 5 1 4.22 12.28

6 6 6 1 4.99 12.28

7 7 7 1 5.74 12.28

8 8 8 1 6.45 12.28

9 9 9 1 7.12 12.28

10 10 10 1 7.75 12.28

11 11 11 1 8.36 12.28

12 12 12 1 8.92 12.28

13 13 13 1 9.45 12.28

14 14 14 1 9.96 12.28

15 15 15 1 10.43 12.28

16 16 16 1 10.87 12.28

17 17 17 1 11.29 12.28

18 18 18 1 11.68 12.28

19 19 19 1 12.05 12.28

20 20 21 2 12.71 15.29

21 22 23 2 13.32 15.29

22 24 25 2 13.86 15.29

23 26 27 2 14.35 15.29

24 28 29 2 14.80 15.29

25 30 31 2 15.21 15.29

26 32 33 2 15.58 15.29

27 34 35 2 15.93 15.29

28 36 38 3 16.32 17.05

29 39 41 3 16.75 17.05

30 42 44 3 17.15 17.05

31 45 47 3 17.51 17.05

32 48 51 4 17.89 18.30

33 52 55 4 18.30 18.30

34 56 59 4 18.67 18.30

35 60 63 4 19.02 18.30

36 64 68 5 19.37 19.27

37 69 73 5 19.74 19.27

38 74 78 5 20.09 22.27

39 79 84 6 20.44 23.06

40 85 90 6 20.79 23.06

41 91 97 7 21.15 25.73

42 98 104 7 21.50 25.73

43 105 112 8 21.85 26.31

44 113 120 8 22.20 31.31

45 121 127 7 22.49 30.73

ISO/IEC 13818-7:2006(E)

148 © ISO/IEC 2006 – All rights reserved

Table C.11 — Psychoacoustic parameters for 24 kHz long FFT

index w_low w_high width bval qsthr

0 0 2 3 0.18 42.05

1 3 5 3 0.53 42.05

2 6 8 3 0.89 42.05

3 9 11 3 1.24 37.05

4 12 14 3 1.59 37.05

5 15 17 3 1.94 37.05

6 18 20 3 2.29 34.05

7 21 23 3 2.63 34.05

8 24 26 3 2.98 34.05

9 27 29 3 3.31 29.05

10 30 32 3 3.65 29.05

11 33 36 4 4.03 28.30

12 37 40 4 4.46 28.30

13 41 44 4 4.88 28.30

14 45 48 4 5.29 28.30

15 49 52 4 5.69 28.30

16 53 56 4 6.08 28.30

17 57 60 4 6.46 28.30

18 61 64 4 6.83 28.30

19 65 68 4 7.19 28.30

20 69 72 4 7.54 28.30

21 73 76 4 7.88 28.30

22 77 81 5 8.25 29.27

23 82 86 5 8.64 29.27

24 87 91 5 9.02 29.27

25 92 96 5 9.38 29.27

26 97 101 5 9.73 29.27

27 102 107 6 10.09 30.06

28 108 113 6 10.47 30.06

29 114 119 6 10.83 30.06

30 120 125 6 11.18 30.06

31 126 132 7 11.53 30.73

32 133 139 7 11.89 30.73

33 140 146 7 12.23 30.73

34 147 154 8 12.57 31.31

35 155 162 8 12.92 31.31

36 163 171 9 13.26 31.82

37 172 180 9 13.61 31.82

38 181 190 10 13.95 32.28

39 191 201 11 14.29 32.69

40 202 213 12 14.65 33.07

41 214 225 12 15.00 33.07

42 226 238 13 15.33 33.42

43 239 252 14 15.66 33.74

44 253 267 15 16.00 34.04

45 268 284 17 16.34 34.58

46 285 302 18 16.69 34.83

47 303 321 19 17.02 35.06

48 322 342 21 17.36 35.50

49 343 364 22 17.70 35.70

50 365 388 24 18.03 36.08

51 389 414 26 18.37 36.43

52 415 442 28 18.70 36.75

53 443 472 30 19.04 37.05

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 149

54 473 504 32 19.38 37.33

55 505 538 34 19.71 37.59

56 539 575 37 20.04 40.96

57 576 614 39 20.38 41.19

58 615 656 42 20.71 41.51

59 657 701 45 21.04 43.81

60 702 750 49 21.37 44.18

61 751 803 53 21.70 44.52

62 804 860 57 22.04 49.83

63 861 922 62 22.37 50.20

64 923 989 67 22.70 50.54

65 990 1023 34 22.95 47.59

ISO/IEC 13818-7:2006(E)

150 © ISO/IEC 2006 – All rights reserved

Table C.12 — Psychoacoustic parameters for 24 kHz short FFT

index w_low w_high width bval qsthr

0 0 0 1 0.00 27.28

1 1 1 1 0.95 27.28

2 2 2 1 1.88 22.28

3 3 3 1 2.81 19.28

4 4 4 1 3.70 14.28

5 5 5 1 4.57 12.28

6 6 6 1 5.39 12.28

7 7 7 1 6.18 12.28

8 8 8 1 6.93 12.28

9 9 9 1 7.63 12.28

10 10 10 1 8.29 12.28

11 11 11 1 8.91 12.28

12 12 12 1 9.49 12.28

13 13 13 1 10.03 12.28

14 14 14 1 10.53 12.28

15 15 15 1 11.01 12.28

16 16 16 1 11.45 12.28

17 17 17 1 11.87 12.28

18 18 18 1 12.26 12.28

19 19 19 1 12.62 12.28

20 20 21 2 13.28 15.29

21 22 23 2 13.87 15.29

22 24 25 2 14.40 15.29

23 26 27 2 14.88 15.29

24 28 29 2 15.32 15.29

25 30 31 2 15.71 15.29

26 32 33 2 16.08 15.29

27 34 36 3 16.49 17.05

28 37 39 3 16.94 17.05

29 40 42 3 17.35 17.05

30 43 45 3 17.73 17.05

31 46 48 3 18.07 17.05

32 49 52 4 18.44 18.30

33 53 56 4 18.83 18.30

34 57 60 4 19.20 18.30

35 61 65 5 19.57 19.27

36 66 70 5 19.96 19.27

37 71 75 5 20.31 22.27

38 76 81 6 20.67 23.06

39 82 87 6 21.04 25.06

40 88 94 7 21.41 25.73

41 95 101 7 21.77 25.73

42 102 109 8 22.13 31.31

43 110 117 8 22.48 31.31

44 118 126 9 22.82 31.82

45 127 127 1 23.01 32.28

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 151

Table C.13 — Psychoacoustic parameters for 32 kHz long FFT

index w_low w_high width bval qsthr

0 0 2 3 0.24 42.05

1 3 5 3 0.71 42.05

2 6 8 3 1.18 37.05

3 9 11 3 1.65 37.05

4 12 14 3 2.12 34.05

5 15 17 3 2.58 34.05

6 18 20 3 3.03 29.05

7 21 23 3 3.48 29.05

8 24 26 3 3.92 29.05

9 27 29 3 4.35 27.05

10 30 32 3 4.77 27.05

11 33 35 3 5.19 27.05

12 36 38 3 5.59 27.05

13 39 41 3 5.99 27.05

14 42 44 3 6.37 27.05

15 45 47 3 6.74 27.05

16 48 50 3 7.10 27.05

17 51 53 3 7.45 27.05

18 54 56 3 7.80 27.05

19 57 60 4 8.18 28.30

20 61 64 4 8.60 28.30

21 65 68 4 9.00 28.30

22 69 72 4 9.39 28.30

23 73 76 4 9.76 28.30

24 77 80 4 10.11 28.30

25 81 84 4 10.45 28.30

26 85 89 5 10.81 29.27

27 90 94 5 11.19 29.27

28 95 99 5 11.55 29.27

29 100 104 5 11.90 29.27

30 105 110 6 12.25 30.06

31 111 116 6 12.62 30.06

32 117 122 6 12.96 30.06

33 123 129 7 13.31 30.73

34 130 136 7 13.66 30.73

35 137 144 8 14.01 31.31

36 145 152 8 14.36 31.31

37 153 161 9 14.71 31.82

38 162 171 10 15.07 32.28

39 172 181 10 15.42 32.28

40 182 192 11 15.76 32.69

41 193 204 12 16.10 33.07

42 205 217 13 16.45 33.42

43 218 231 14 16.80 33.74

44 232 246 15 17.14 34.04

45 247 262 16 17.48 34.32

46 263 279 17 17.82 34.58

47 280 298 19 18.15 35.06

48 299 318 20 18.49 35.29

49 319 340 22 18.84 35.70

50 341 363 23 19.17 35.89

51 364 388 25 19.51 36.26

52 389 415 27 19.85 36.59

53 416 444 29 20.19 39.90

54 445 475 31 20.53 40.19

55 476 508 33 20.87 40.46

56 509 543 35 21.20 42.72

57 544 581 38 21.53 43.07

58 582 622 41 21.86 43.40

ISO/IEC 13818-7:2006(E)

152 © ISO/IEC 2006 – All rights reserved

59 623 667 45 22.20 48.81

60 668 715 48 22.53 49.09

61 716 768 53 22.86 49.52

62 769 826 58 23.20 59.91

63 827 890 64 23.53 60.34

64 891 961 71 23.86 60.79

65 962 1023 62 24.00 65.89

Table C.14 — Psychoacoustic parameters for 32 kHz short FFT

index w_low w_high width bval qsthr

0 0 0 1 0.00 27.28

1 1 1 1 1.26 22.28

2 2 2 1 2.50 19.28

3 3 3 1 3.70 14.28

4 4 4 1 4.85 12.28

5 5 5 1 5.92 12.28

6 6 6 1 6.93 12.28

7 7 7 1 7.85 12.28

8 8 8 1 8.70 12.28

9 9 9 1 9.49 12.28

10 10 10 1 10.20 12.28

11 11 11 1 10.85 12.28

12 12 12 1 11.45 12.28

13 13 13 1 12.00 12.28

14 14 14 1 12.50 12.28

15 15 15 1 12.96 12.28

16 16 16 1 13.39 12.28

17 17 17 1 13.78 12.28

18 18 18 1 14.15 12.28

19 19 20 2 14.80 15.29

20 21 22 2 15.38 15.29

21 23 24 2 15.89 15.29

22 25 26 2 16.36 15.29

23 27 28 2 16.77 15.29

24 29 30 2 17.15 15.29

25 31 32 2 17.50 15.29

26 33 35 3 17.90 17.05

27 36 38 3 18.34 17.05

28 39 41 3 18.74 17.05

29 42 44 3 19.11 17.05

30 45 48 4 19.50 18.30

31 49 52 4 19.92 18.30

32 53 56 4 20.30 21.30

33 57 60 4 20.65 21.30

34 61 65 5 21.02 24.27

35 66 70 5 21.40 24.27

36 71 75 5 21.75 24.27

37 76 81 6 22.10 30.06

38 82 87 6 22.45 30.06

39 88 94 7 22.80 30.73

40 95 102 8 23.16 41.31

41 103 110 8 23.51 41.31

42 111 119 9 23.85 41.82

43 120 127 8 24.00 60.47

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 153

Table C.15 – Psychoacoustic parameters for 44.1 kHz long FFT

index w_low w_high width bval qsthr

0 0 1 2 0.22 40.29

1 2 3 2 0.65 40.29

2 4 5 2 1.09 35.29

3 6 7 2 1.52 35.29

4 8 9 2 1.95 35.29

5 10 11 2 2.37 32.29

6 12 13 2 2.79 32.29

7 14 15 2 3.21 27.29

8 16 17 2 3.62 27.29

9 18 19 2 4.02 25.29

10 20 21 2 4.41 25.29

11 22 23 2 4.80 25.29

12 24 25 2 5.18 25.29

13 26 27 2 5.55 25.29

14 28 29 2 5.92 25.29

15 30 31 2 6.27 25.29

16 32 33 2 6.62 25.29

17 34 35 2 6.95 25.29

18 36 38 3 7.36 27.05

19 39 41 3 7.83 27.05

20 42 44 3 8.28 27.05

21 45 47 3 8.71 27.05

22 48 50 3 9.12 27.05

23 51 53 3 9.52 27.05

24 54 56 3 9.89 27.05

25 57 59 3 10.25 27.05

26 60 62 3 10.59 27.05

27 63 66 4 10.97 28.30

28 67 70 4 11.38 28.30

29 71 74 4 11.77 28.30

30 75 78 4 12.13 28.30

31 79 82 4 12.48 28.30

32 83 87 5 12.84 29.27

33 88 92 5 13.22 29.27

34 93 97 5 13.57 29.27

35 98 103 6 13.93 30.06

36 104 109 6 14.30 30.06

37 110 116 7 14.67 30.73

38 117 123 7 15.03 30.73

39 124 131 8 15.40 31.31

40 132 139 8 15.76 31.31

41 140 148 9 16.11 31.82

42 149 157 9 16.45 31.82

43 158 167 10 16.79 32.28

44 168 178 11 17.13 32.69

45 179 190 12 17.48 33.07

46 191 203 13 17.83 33.42

47 204 217 14 18.18 33.74

48 218 232 15 18.52 34.04

49 233 248 16 18.87 34.32

50 249 265 17 19.21 34.58

51 266 283 18 19.54 34.83

52 284 303 20 19.88 35.29

53 304 324 21 20.22 38.50

ISO/IEC 13818-7:2006(E)

154 © ISO/IEC 2006 – All rights reserved

54 325 347 23 20.56 38.89

55 348 371 24 20.90 39.08

56 372 397 26 21.24 41.43

57 398 425 28 21.57 41.75

58 426 455 30 21.91 42.05

59 456 488 33 22.24 47.46

60 489 524 36 22.58 47.84

61 525 563 39 22.91 48.19

62 564 606 43 23.25 58.61

63 607 653 47 23.58 59.00

64 654 706 53 23.91 59.52

65 707 765 59 24.00 69.98

66 766 832 67 24.00 70.54

67 833 908 76 24.00 71.08

68 909 996 88 24.00 71.72

69 997 1023 27 24.00 72.09

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 155

Table C.16 — Psychoacoustic parameters for 44.1 kHz short FFT

index w_low w_high width bval qsthr

0 0 0 1 0.00 27.28

1 1 1 1 1.73 22.28

2 2 2 1 3.41 14.28

3 3 3 1 4.99 12.28

4 4 4 1 6.45 12.28

5 5 5 1 7.75 12.28

6 6 6 1 8.92 12.28

7 7 7 1 9.96 12.28

8 8 8 1 10.87 12.28

9 9 9 1 11.68 12.28

10 10 10 1 12.39 12.28

11 11 11 1 13.03 12.28

12 12 12 1 13.61 12.28

13 13 13 1 14.12 12.28

14 14 14 1 14.59 12.28

15 15 15 1 15.01 12.28

16 16 16 1 15.40 12.28

17 17 17 1 15.76 12.28

18 18 19 2 16.39 15.29

19 20 21 2 16.95 15.29

20 22 23 2 17.45 15.29

21 24 25 2 17.89 15.29

22 26 27 2 18.30 15.29

23 28 29 2 18.67 15.29

24 30 31 2 19.02 15.29

25 32 34 3 19.41 17.05

26 35 37 3 19.85 17.05

27 38 40 3 20.25 20.05

28 41 43 3 20.62 20.05

29 44 47 4 21.01 23.30

30 48 51 4 21.43 23.30

31 52 55 4 21.81 23.30

32 56 59 4 22.15 28.30

33 60 64 5 22.51 29.27

34 65 69 5 22.87 29.27

35 70 75 6 23.23 40.06

36 76 81 6 23.59 40.06

37 82 88 7 23.93 40.73

38 89 96 8 24.00 51.31

39 97 105 9 24.00 51.82

40 106 115 10 24.00 52.28

41 116 127 12 24.00 53.07

ISO/IEC 13818-7:2006(E)

156 © ISO/IEC 2006 – All rights reserved

Table C.17 — Psychoacoustic parameters for 48 kHz long FFT

index w_low w_high width bval qsthr

0 0 1 2 0.24 40.29

1 2 3 2 0.71 40.29

2 4 5 2 1.18 35.29

3 6 7 2 1.65 35.29

4 8 9 2 2.12 32.29

5 10 11 2 2.58 32.29

6 12 13 2 3.03 27.29

7 14 15 2 3.48 27.29

8 16 17 2 3.92 27.29

9 18 19 2 4.35 25.29

10 20 21 2 4.77 25.29

11 22 23 2 5.19 25.29

12 24 25 2 5.59 25.29

13 26 27 2 5.99 25.29

14 28 29 2 6.37 25.29

15 30 31 2 6.74 25.29

16 32 33 2 7.10 25.29

17 34 35 2 7.45 25.29

18 36 37 2 7.80 25.29

19 38 40 3 8.20 27.05

20 41 43 3 8.68 27.05

21 44 46 3 9.13 27.05

22 47 49 3 9.55 27.05

23 50 52 3 9.96 27.05

24 53 55 3 10.35 27.05

25 56 58 3 10.71 27.05

26 59 61 3 11.06 27.05

27 62 65 4 11.45 28.30

28 66 69 4 11.86 28.30

29 70 73 4 12.25 28.30

30 74 77 4 12.62 28.30

31 78 81 4 12.96 28.30

32 82 86 5 13.32 29.27

33 87 91 5 13.70 29.27

34 92 96 5 14.05 29.27

35 97 102 6 14.41 30.06

36 103 108 6 14.77 30.06

37 109 115 7 15.13 30.73

38 116 122 7 15.49 30.73

39 123 130 8 15.85 31.31

40 131 138 8 16.20 31.31

41 139 147 9 16.55 31.82

42 148 157 10 16.91 32.28

43 158 167 10 17.25 32.28

44 168 178 11 17.59 32.69

45 179 190 12 17.93 33.07

46 191 203 13 18.28 33.42

47 204 217 14 18.62 33.74

48 218 232 15 18.96 34.04

49 233 248 16 19.30 34.32

50 249 265 17 19.64 34.58

51 266 283 18 19.97 34.83

52 284 303 20 20.31 38.29

53 304 324 21 20.65 38.50

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 157

54 325 347 23 20.99 38.89

55 348 371 24 21.33 41.08

56 372 397 26 21.66 41.43

57 398 425 28 21.99 41.75

58 426 456 31 22.32 47.19

59 457 490 34 22.66 47.59

60 491 527 37 23.00 47.96

61 528 567 40 23.33 58.30

62 568 612 45 23.67 58.81

63 613 662 50 24.00 69.27

64 663 718 56 24.00 69.76

65 719 781 63 24.00 70.27

66 782 853 72 24.00 70.85

67 854 937 84 24.00 71.52

68 938 1023 86 24.00 70.20

ISO/IEC 13818-7:2006(E)

158 © ISO/IEC 2006 – All rights reserved

Table C.18 — Psychoacoustic parameters for 48 kHz short FFT

index w_low w_high width bval qsthr

0 0 0 1 0.00 27.28

1 1 1 1 1.88 22.28

2 2 2 1 3.70 14.28

3 3 3 1 5.39 12.28

4 4 4 1 6.93 12.28

5 5 5 1 8.29 12.28

6 6 6 1 9.49 12.28

7 7 7 1 10.53 12.28

8 8 8 1 11.45 12.28

9 9 9 1 12.26 12.28

10 10 10 1 12.96 12.28

11 11 11 1 13.59 12.28

12 12 12 1 14.15 12.28

13 13 13 1 14.65 12.28

14 14 14 1 15.11 12.28

15 15 15 1 15.52 12.28

16 16 16 1 15.90 12.28

17 17 18 2 16.56 15.29

18 19 20 2 17.15 15.29

19 21 22 2 17.66 15.29

20 23 24 2 18.13 15.29

21 25 26 2 18.54 15.29

22 27 28 2 18.93 15.29

23 29 30 2 19.28 15.29

24 31 33 3 19.69 17.05

25 34 36 3 20.14 20.05

26 37 39 3 20.54 20.05

27 40 42 3 20.92 20.05

28 43 45 3 21.27 22.05

29 46 49 4 21.64 23.30

30 50 53 4 22.03 28.30

31 54 57 4 22.39 28.30

32 58 62 5 22.76 29.27

33 63 67 5 23.13 39.27

34 68 73 6 23.49 40.06

35 74 79 6 23.85 40.06

36 80 86 7 24.00 50.73

37 87 94 8 24.00 51.31

38 95 103 9 24.00 51.82

39 104 113 10 24.00 52.28

40 114 125 12 24.00 53.07

41 126 127 1 24.00 53.07

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 159

Table C.19 — Psychoacoustic parameters for 64 kHz long FFT

index w_low w_high width bval qsthr

0 0 1 2 0.32 40.29

1 2 3 2 0.95 40.29

2 4 5 2 1.57 35.29

3 6 7 2 2.19 32.29

4 8 9 2 2.80 32.29

5 10 11 2 3.40 27.29

6 12 13 2 3.99 27.29

7 14 15 2 4.56 25.29

8 16 17 2 5.12 25.29

9 18 19 2 5.66 25.29

10 20 21 2 6.18 25.29

11 22 23 2 6.68 25.29

12 24 25 2 7.16 25.29

13 26 27 2 7.63 25.29

14 28 29 2 8.07 25.29

15 30 31 2 8.50 25.29

16 32 33 2 8.90 25.29

17 34 35 2 9.29 25.29

18 36 37 2 9.67 25.29

19 38 39 2 10.03 25.29

20 40 41 2 10.37 25.29

21 42 44 3 10.77 27.05

22 45 47 3 11.23 27.05

23 48 50 3 11.66 27.05

24 51 53 3 12.06 27.05

25 54 56 3 12.44 27.05

26 57 59 3 12.79 27.05

27 60 63 4 13.18 28.30

28 64 67 4 13.59 28.30

29 68 71 4 13.97 28.30

30 72 75 4 14.32 28.30

31 76 80 5 14.69 29.27

32 81 85 5 15.07 29.27

33 86 90 5 15.42 29.27

34 91 96 6 15.77 30.06

35 97 102 6 16.13 30.06

36 103 109 7 16.49 30.73

37 110 116 7 16.85 30.73

38 117 124 8 17.20 31.31

39 125 132 8 17.54 31.31

40 133 141 9 17.88 31.82

41 142 151 10 18.23 32.28

42 152 161 10 18.58 32.28

43 162 172 11 18.91 32.69

44 173 184 12 19.25 33.07

45 185 197 13 19.60 33.42

46 198 211 14 19.94 33.74

47 212 226 15 20.29 37.04

48 227 242 16 20.63 37.32

49 243 259 17 20.97 37.58

50 260 277 18 21.31 39.83

51 278 297 20 21.64 40.29

52 298 318 21 21.98 40.50

53 319 341 23 22.31 45.89

ISO/IEC 13818-7:2006(E)

160 © ISO/IEC 2006 – All rights reserved

54 342 366 25 22.65 46.26

55 367 394 28 22.98 46.75

56 395 424 30 23.32 57.05

57 425 458 34 23.66 57.59

58 459 495 37 23.99 57.96

59 496 537 42 24.00 68.51

60 538 584 47 24.00 69.00

61 585 638 54 24.00 69.60

62 639 701 63 24.00 70.27

63 702 774 73 24.00 70.91

64 775 861 87 24.00 71.67

65 862 966 105 24.00 72.49

66 967 1023 57 24.00 69.83

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 161

Table C.20 – Psychoacoustic parameters for 64 kHz short FFT

index w_low w_high width bval qsthr

0 0 0 1 0.00 27.28

1 1 1 1 2.50 19.28

2 2 2 1 4.85 12.28

3 3 3 1 6.93 12.28

4 4 4 1 8.70 12.28

5 5 5 1 10.20 12.28

6 6 6 1 11.45 12.28

7 7 7 1 12.50 12.28

8 8 8 1 13.39 12.28

9 9 9 1 14.15 12.28

10 10 10 1 14.81 12.28

11 11 11 1 15.39 12.28

12 12 12 1 15.90 12.28

13 13 13 1 16.36 12.28

14 14 14 1 16.78 12.28

15 15 15 1 17.16 12.28

16 16 17 2 17.82 15.29

17 18 19 2 18.40 15.29

18 20 21 2 18.92 15.29

19 22 23 2 19.39 15.29

20 24 25 2 19.82 15.29

21 26 27 2 20.21 18.29

22 28 29 2 20.57 18.29

23 30 32 3 20.98 20.05

24 33 35 3 21.43 22.05

25 36 38 3 21.84 22.05

26 39 41 3 22.22 27.05

27 42 45 4 22.61 28.30

28 46 49 4 23.02 38.30

29 50 53 4 23.39 38.30

30 54 58 5 23.75 39.27

31 59 63 5 24.00 49.27

32 64 69 6 24.00 50.06

33 70 76 7 24.00 50.73

34 77 84 8 24.00 51.31

35 85 93 9 24.00 51.82

36 94 104 11 24.00 52.69

37 105 117 13 24.00 53.42

38 118 127 10 24.00 52.28

ISO/IEC 13818-7:2006(E)

162 © ISO/IEC 2006 – All rights reserved

Table C.21 — Psychoacoustic parameters for 88.2 kHz long FFT

index w_low w_high width bval qsthr

0 0 0 1 0.00 37.28

1 1 1 1 0.44 37.28

2 2 2 1 0.87 37.28

3 3 3 1 1.30 32.28

4 4 4 1 1.73 32.28

5 5 5 1 2.16 29.28

6 6 6 1 2.58 29.28

7 7 7 1 3.00 24.28

8 8 8 1 3.41 24.28

9 9 9 1 3.82 24.28

10 10 10 1 4.22 22.28

11 11 11 1 4.61 22.28

12 12 12 1 4.99 22.28

13 13 13 1 5.37 22.28

14 14 14 1 5.74 22.28

15 15 15 1 6.10 22.28

16 16 16 1 6.45 22.28

17 17 17 1 6.79 22.28

18 18 19 2 7.44 25.29

19 20 21 2 8.05 25.29

20 22 23 2 8.64 25.29

21 24 25 2 9.19 25.29

22 26 27 2 9.70 25.29

23 28 29 2 10.19 25.29

24 30 31 2 10.65 25.29

25 32 33 2 11.08 25.29

26 34 35 2 11.48 25.29

27 36 37 2 11.86 25.29

28 38 39 2 12.22 25.29

29 40 42 3 12.64 27.05

30 43 45 3 13.10 27.05

31 46 48 3 13.53 27.05

32 49 51 3 13.93 27.05

33 52 54 3 14.30 27.05

34 55 58 4 14.69 28.30

35 59 62 4 15.11 28.30

36 63 66 4 15.49 28.30

37 67 70 4 15.84 28.30

38 71 75 5 16.21 29.27

39 76 80 5 16.58 29.27

40 81 85 5 16.92 29.27

41 86 91 6 17.27 30.06

42 92 97 6 17.62 30.06

43 98 104 7 17.97 30.73

44 105 111 7 18.32 30.73

45 112 119 8 18.67 31.31

46 120 127 8 19.02 31.31

47 128 136 9 19.35 31.82

48 137 146 10 19.71 32.28

49 147 156 10 20.05 35.28

50 157 167 11 20.39 35.69

51 168 179 12 20.73 36.07

52 180 192 13 21.08 38.42

53 193 206 14 21.43 38.74

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 163

54 207 221 15 21.77 39.04

55 222 237 16 22.11 44.32

56 238 255 18 22.45 44.83

57 256 274 19 22.80 45.06

58 275 295 21 23.13 55.50

59 296 318 23 23.47 55.89

60 319 344 26 23.81 56.43

61 345 373 29 24.00 66.90

62 374 405 32 24.00 67.33

63 406 442 37 24.00 67.96

64 443 484 42 24.00 68.51

65 485 533 49 24.00 69.18

66 534 591 58 24.00 69.91

67 592 660 69 24.00 70.66

68 661 745 85 24.00 71.57

69 746 851 106 24.00 72.53

70 852 988 137 24.00 73.64

71 989 1023 35 24.00 67.72

ISO/IEC 13818-7:2006(E)

164 © ISO/IEC 2006 – All rights reserved

Table C.22 — Psychoacoustic parameters for 88.2 kHz short FFT

index w_low w_high width bval qsthr

0 0 0 1 0.00 27.28

1 1 1 1 3.41 14.28

2 2 2 1 6.45 12.28

3 3 3 1 8.92 12.28

4 4 4 1 10.87 12.28

5 5 5 1 12.39 12.28

6 6 6 1 13.61 12.28

7 7 7 1 14.59 12.28

8 8 8 1 15.40 12.28

9 9 9 1 16.09 12.28

10 10 10 1 16.69 12.28

11 11 11 1 17.21 12.28

12 12 12 1 17.68 12.28

13 13 13 1 18.11 12.28

14 14 14 1 18.49 12.28

15 15 15 1 18.85 12.28

16 16 17 2 19.48 15.29

17 18 19 2 20.05 18.29

18 20 21 2 20.55 18.29

19 22 23 2 21.01 20.29

20 24 25 2 21.43 20.29

21 26 27 2 21.81 20.29

22 28 29 2 22.15 25.29

23 30 32 3 22.55 27.05

24 33 35 3 22.98 27.05

25 36 38 3 23.36 37.05

26 39 42 4 23.75 38.30

27 43 46 4 24.00 48.30

28 47 51 5 24.00 49.27

29 52 56 5 24.00 49.27

30 57 62 6 24.00 50.06

31 63 69 7 24.00 50.73

32 70 77 8 24.00 51.31

33 78 87 10 24.00 52.28

34 88 99 12 24.00 53.07

35 100 115 16 24.00 54.32

36 116 127 12 24.00 53.07

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 165

Table C.23 — Psychoacoustic parameters for 96 kHz long FFT

index w_low w_high width bval qsthr

0 0 0 1 0.00 37.28

1 1 1 1 0.47 37.28

2 2 2 1 0.95 37.28

3 3 3 1 1.42 32.28

4 4 4 1 1.88 32.28

5 5 5 1 2.35 29.28

6 6 6 1 2.81 29.28

7 7 7 1 3.26 24.28

8 8 8 1 3.70 24.28

9 9 9 1 4.14 22.28

10 10 10 1 4.57 22.28

11 11 11 1 4.98 22.28

12 12 12 1 5.39 22.28

13 13 13 1 5.79 22.28

14 14 14 1 6.18 22.28

15 15 15 1 6.56 22.28

16 16 16 1 6.93 22.28

17 17 17 1 7.28 22.28

18 18 18 1 7.63 22.28

19 19 20 2 8.28 25.29

20 21 22 2 8.90 25.29

21 23 24 2 9.48 25.29

22 25 26 2 10.02 25.29

23 27 28 2 10.53 25.29

24 29 30 2 11.00 25.29

25 31 32 2 11.45 25.29

26 33 34 2 11.86 25.29

27 35 36 2 12.25 25.29

28 37 38 2 12.62 25.29

29 39 40 2 12.96 25.29

30 41 43 3 13.36 27.05

31 44 46 3 13.80 27.05

32 47 49 3 14.21 27.05

33 50 52 3 14.59 27.05

34 53 55 3 14.94 27.05

35 56 59 4 15.32 28.30

36 60 63 4 15.71 28.30

37 64 67 4 16.08 28.30

38 68 72 5 16.45 29.27

39 73 77 5 16.83 29.27

40 78 82 5 17.19 29.27

41 83 88 6 17.54 30.06

42 89 94 6 17.90 30.06

43 95 101 7 18.26 30.73

44 102 108 7 18.62 30.73

45 109 116 8 18.97 31.31

46 117 124 8 19.32 31.31

47 125 133 9 19.67 31.82

48 134 143 10 20.03 35.28

49 144 153 10 20.38 35.28

50 154 164 11 20.72 35.69

51 165 176 12 21.07 38.07

52 177 189 13 21.42 38.42

53 190 203 14 21.77 38.74

ISO/IEC 13818-7:2006(E)

166 © ISO/IEC 2006 – All rights reserved

54 204 218 15 22.12 44.04

55 219 234 16 22.46 44.32

56 235 252 18 22.80 44.83

57 253 271 19 23.14 55.06

58 272 292 21 23.47 55.50

59 293 316 24 23.81 56.08

60 317 342 26 24.00 66.43

61 343 372 30 24.00 67.05

62 373 406 34 24.00 67.59

63 407 445 39 24.00 68.19

64 446 490 45 24.00 68.81

65 491 543 53 24.00 69.52

66 544 607 64 24.00 70.34

67 608 685 78 24.00 71.20

68 686 783 98 24.00 72.19

69 784 910 127 24.00 73.31

70 911 1023 113 24.00 72.81

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 167

Table C.24 — Psychoacoustic parameters for 96 kHz short FFT

index w_low w_high width bval qsthr

0 0 0 1 0.00 27.28

1 1 1 1 3.70 14.28

2 2 2 1 6.93 12.28

3 3 3 1 9.49 12.28

4 4 4 1 11.45 12.28

5 5 5 1 12.96 12.28

6 6 6 1 14.15 12.28

7 7 7 1 15.11 12.28

8 8 8 1 15.90 12.28

9 9 9 1 16.57 12.28

10 10 10 1 17.16 12.28

11 11 11 1 17.67 12.28

12 12 12 1 18.13 12.28

13 13 13 1 18.55 12.28

14 14 14 1 18.93 12.28

15 15 16 2 19.60 15.29

16 17 18 2 20.20 18.29

17 19 20 2 20.73 18.29

18 21 22 2 21.21 20.29

19 23 24 2 21.64 20.29

20 25 26 2 22.03 25.29

21 27 28 2 22.39 25.29

22 29 31 3 22.79 27.05

23 32 34 3 23.23 37.05

24 35 37 3 23.62 37.05

25 38 41 4 24.00 48.30

26 42 45 4 24.00 48.30

27 46 50 5 24.00 49.27

28 51 55 5 24.00 49.27

29 56 61 6 24.00 50.06

30 62 68 7 24.00 50.73

31 69 77 9 24.00 51.82

32 78 88 11 24.00 52.69

33 89 102 14 24.00 53.74

34 103 120 18 24.00 54.83

35 121 127 7 24.00 50.73

C.2 Gain Control

C.2.1 Encoding Process

The gain control tool consists of a PQF (Polyphase Quadrature Filter), gain detectors and gain modifiers. This
tool receives the input time-domain signals and window_sequence, and then outputs gain_control_data and
a gain controlled signal whose length is equal to the length of the MDCT window. The block diagram for the
gain control tool is shown in Figure C.2 .

Due to the characteristics of the PQF filterbank, the order of the MDCT coefficients in each even PQF band
needs to be reversed. This is done by reversing the spectral order of the MDCT coefficients, i.e. exchanging
the higher frequency MDCT coefficients with the lower frequency MDCT coefficients.

If the gain control tool is used, the configuration of the filterbank tool is changed as follows. In the case of an
EIGHT_SHORT_SEQUENCE window_sequence, the number of coefficients for the MDCT is 32 instead of

ISO/IEC 13818-7:2006(E)

168 © ISO/IEC 2006 – All rights reserved

128 and eight MDCTs are carried out. In the case of other window_sequence values, the number of
coefficients for the MDCT is 256 instead of 1024 and one MDCT is carried out. In all cases, the filter bank tool
receives a total of 2048 gain controlled signal values per frame, because the input samples have been
overlapped.

C.2.1.1 PQF

The input signal is divided by a PQF into four equal width frequency bands. The coefficients of each band
PQF are given as follows.

 () ()() () 30,950,
16

5212
cos

4

1
≤≤≤≤⎟

⎠
⎞

⎜
⎝
⎛ ++

= innQ
ni

nhi

π

where

 () () 9548,95 ≤≤−= nnQnQ

and the values of Q(n) are the same values as those of the decoder.

C.2.1.2 Gain Detector

The gain detectors produce gain control data which satisfies the bitstream syntax. This information consists of
the number of gain changes, the index of gain change positions and the index of gain change level. Note that
the output gain control data applies to the previous input time signal. This means that the gain detector has a
one frame delay.

The detection of the gain change point is done in the second half of the MDCT window region and in the non-
overlapped region (of LONG_START_SEQUENCE and LONG_STOP_SEQUENCE). Thus the number of
regions are one for ONLY_LONG_SEQUENCE, two for LONG_START_SEQUENCE and
LONG_STOP_SEQUNCE, and eight for EIGHT_SHORT_SEQUENCE.

The samples in each region are divided into subregions, each having eight-tuple samples. Then one value
(e.g. peak value of samples) is selected in these subregions. The ratios between the values of subregions and
the value of the last subregion are calculated. If the ratio is greater or less than the value of 2 ^ n where n is
an integer between -4 to 11, those subregions can be detected as the gain change points of the signals. The
subregion number which is detected as the gain change point is set to be the position data. The exponent of
the ratio is set to be the gain data. The time resolution of the gain control is approximately 0.7 ms at 48 kHz
sampling rate.

C.2.1.3 Gain Modifier

The gain modifier for each PQF band controls the gain of each signal band. The complementary gain control
process in the decoder decreases the pre-echo and reconstructs the original signal. A window function for
gain control, the Gain Modification Function (GMF), which is defined in the decoding process, is derived from
the gains and the gain-changed positions. The gain controlled signals are derived by applying the GMF to the
corresponding band signals.

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 169

C.2.2 Diagrams

PQF

gain_

control_

data

gain control tool

window_

sequence

Gain

Modifier
Gain

Detector

Gain

Modifier
Gain

Detector

Gain

Modifier
Gain

Detector gain

controlled

time

signal

256 or 32

MDCT

256 or 32

MDCT

256 or 32

MDCT

256 or 32

MDCT

Spectral

reverse

Spectral

reverse

Figure C.2 — Block diagram of gain control tool for encoder

C.3 Filterbank and Block Switching

A fundamental component in the audio coding process is the conversion of the time domain signals into a
time-frequency representation. This conversion is done by a forward modified discrete cosine transform
(MDCT).

C.3.1 Encoding Process

In the encoder the filterbank takes the appropriate block of time samples, modulates them by an appropriate
window function, and performs the MDCT. Each block of input samples is overlapped by 50% with the
immediately preceding block and the following block. The transform input block length N can be set to either
2048 or 256 samples. Since the window function has a significant effect on the filterbank frequency response,
the filterbank has been designed to allow a change in window shape to best adapt to input signal conditions.
The shape of the window is varied simultaneously in the encoder and decoder to allow the filterbank to
efficiently separate spectral components of the input for a wider variety of input signals.

C.3.1.1 Windowing and Block Switching

The adaptation of the time-frequency resolution of the filterbank to the characteristics of the input signal is
done by shifting between transforms whose input lengths are either 2048 or 256 samples. The meaningfull
transitions are described in subclause 15.3.1.

Window shape decisions are made by the encoder on a frame-by-frame-basis. The window selected is
applicable to the second half of the window function only, since the first half is constrained to use the

ISO/IEC 13818-7:2006(E)

170 © ISO/IEC 2006 – All rights reserved

appropriate window shape from the preceding frame. Figure C.3 shows the sequence of blocks for the
transition (D-E-F) to and from a frame employing the sine function window. The window shape selector
generally produces window shape run-lengths greater than that shown in the figure.

The 2048 time-domain values x’i,n to be windowed are the last 1024 values of the previous window_sequence
concatenated with 1024 values of the current block. The formula below shows this fact:

⎩
⎨
⎧

<≤
<≤

= +−

2048n1024for ,

 1024n0for ,
'

,

)1024(),1(

,

ni

ni

ni x

x
x

Where i is the block index and n is the sample index within a block. Once the window shape is selected, the
window_shape syntax element is initialized. Together with the chosen window_sequence all information
needed for windowing exist.

With the window halves described in subclause 15.3.2, all window_sequence's can be assembled.

C.3.1.2 MDCT

The spectral coefficient, Xi,k, are defined as follows:

()∑
−

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ ++⋅=

1

0

0,,
2

12
cos2

N

n

niki knn
N

zX
π

 for 2/0 Nk <≤ .

 1)/2(N/2 = n

 valuequence window_seon the based window transformone theoflength window= N

indexblock = i

indext coefficien spectral =k

index sample =n

sequenceinput windowed
in

z

:where

0
+

=

The analysis window length N of one transform window of the mdct is a function of the syntax element
window_sequence and is defined as follows:

⎪
⎪
⎩

⎪
⎪
⎨

⎧

 (0x3) SEQUENCELONG_STOP_ if 2048,

 times)(8 (0x2) T_SEQUENCEEIGHT_SHOR if 256,

 (0x1) _SEQUENCELONG_START if 2048,

 (0x0) SEQUENCEONLY_LONG_ if 2048,

 =N

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 171

C.3.2 Diagrams

0 512 1024 1536 2048 2560 3072 3584 4096

FED
Overlap-Add Sequence with a Transition to a Sine

1

1

0

0

CBA
Kaiser-Bessel Derived Windows for Overlap-Add

Gain

Time (samples)

Figure C.3 — Example of the Window Shape Adaptation Process.

0 512 1024 1536 2048 2560 3072 3584 4096

1

1

0

0

102 3 4 5 6 7 8 91

CBA

windows during transient conditions

windows during steady state conditions
Gain

Time (samples)

Figure C.4 — Example of Block Switching During Transient Signal Conditions

ISO/IEC 13818-7:2006(E)

172 © ISO/IEC 2006 – All rights reserved

C.4 Prediction

C.4.1 Tool Description

Since each predictor itself is identical on both, the encoder and decoder side, all descriptions and definitions
as specified for the decoder in clause 13 are also valid here.

Prediction is used for an improved redundancy reduction and is especially effective in case of more or less
stationary parts of a signal which belong to the most demanding parts in terms of required bitrate. Prediction
can be applied to every channel using an intra channel (or mono) predictor which exploits the auto-correlation
between the spectral components of consecutive frames. Because a window_sequence of type
EIGHT_SHORT_SEQUENCE indicates signal changes, i.e. non-stationary signal characteristic, prediction is
only used if window_sequence is of type ONLY_LONG_SEQUENCE, LONG_START_SEQUENCE or
LONG_STOP_SEQUENCE.

For each channel prediction is applied to the spectral components resulting from the spectral decomposition of
the filterbank. For each spectral component up to limit specified by PRED_SFB_MAX, there is one
corresponding predictor resulting in a bank of predictors, where each predictor exploits the auto-correlation
between the spectral component values of consecutive frames.

The overall coding structure using a filterbank with high spectral resolution implies the use of backward
adaptive predictors to achieve high coding efficiency. In this case, the predictor coefficients are calculated
from preceding quantized spectral components in the encoder as well as in the decoder and no additional side
information is needed for the transmission of predictor coefficients - as would be required for forward adaptive
predictors. A second order backward-adaptive lattice structure predictor is used for each spectral component,
so that each predictor is working on the spectral component values of the two preceding frames. The predictor
parameters are adapted to the current signal statistics on a frame by frame base, using an LMS based
adaptation algorithm. If prediction is activated, the quantizer is fed with a prediction error instead of the original
spectral component, resulting in a coding gain.

C.4.2 Encoding Process

For each spectral component up to the limit specified by PRED_SFB_MAX of each channel there is one
predictor. The following description is valid for one single predictor and has to be applied to each predictor. As
said above, each predictor is identical on both, the encoder and decoder side. Therefore, the predictor
structure is the same as shown in Figure 4 and the calculations of the estimate xest(n) of the current spectral
component x(n) as well as the calculation and adaptation of the predictor coefficients are exactly the same as
those described for the decoder in subclause 8.3.2.

The only difference on the encoder side is that the prediction error has to be calculated according to

)()()(nxnxne est−=

to be fed to the quantizer. In this case the quantized prediction error is transmitted instead of the quantized
spectral component.

C.4.2.1 Predictor Control

In order to guarantee that prediction is only used if this results in a coding gain, an appropriate predictor
control is required and a small amount of predictor control information has to be transmitted to the decoder.
For the predictor control, the predictors are grouped into scalefactor bands.

The following description is valid for either one single_channel_element() or one channel_pair_element() and
has to be applied to each such element. Since prediction is only used if window_sequence is of type
ONLY_LONG_SEQUENCE, LONG_START_SEQUENCE or LONG_STOP_SEQUENCE for the channel
associated with the single_channel_element() or for both channels associated with the
channel_pair_element(), the following applies only in these cases.

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 173

The predictor control information for each frame, which has to be transmitted as side information, is
determined in two steps. First, it is determined for each scalefactor band whether or not prediction leads to a
coding gain and if yes, the prediction_used bit for that scalefactor band is set to one. After this has been
done for all scalefactor bands up to PRED_SFB_MAX, it is determined whether the overall coding gain by
prediction in this frame compensates at least the additional bit need for the predictor side information. If yes,
the predictor_data_present bit is set to 1, the complete side information including that needed for predictor
reset (see below) has to be transmitted and the prediction error value is fed to the quantizer. Otherwise, the
predictor_data_present bit is set to 0, the prediction_used bits are all reset to zero and are not transmitted.
In this case, the spectral component value is fed to the quantizer. Figure C.5 shows a block diagram of the
prediction unit for one scalefactor band. As described above, the predictor control first operates on all
predictors of one scalefactor band and is then followed by a second step over all scalefactor bands.

In case of a single_channel_element() or a channel_pair_element() with common_window = 0 the control
information is calculated and valid for the predictor bank(s) of the channel(s) associated with that element. In
case of a channel_pair_element() with common_window = 1 the control information is calculated considering
both channels associated with that element together. In this case the control information is valid for both
predictor banks of the two channels in common.

C.4.2.2 Reconstruction of the Quantized Spectral Component

Since the reconstructed value of the quantized spectral component is needed as predictor input signal, it has
to be calculated in the encoder, see also Figure 8 and Figure C.5. Depending on the value of the
prediction_used bit, the reconstructed value is either the quantized spectral component or the quantized
prediction error. Therefore, the following steps are necessary:

• If the bit is set (1), then the quantized prediction error, reconstructed from data to be transmitted, is added
to the estimate xest(n), calculated by the predictor, resulting in the reconstructed value of the quantized

spectral component, i.e.)()()(nenxnx qestrec +=

• If the bit is not set (0), then the quantized value of the spectral component is identical to the value
reconstructed directly from the data to be transmitted.

ISO/IEC 13818-7:2006(E)

174 © ISO/IEC 2006 – All rights reserved

C.4.3 Diagrams

REC

PREDICTOR CONTROL

(P_ON/P_OFF)

IF (P_ON)

 yj(n) = ej(n)

 = xj(n) - xj,est(n)

IF (P_OFF)

 yj(n) = xj(n)

Pi

xi (n)

xi,est (n)

xi,rec (n-1)

Qi

yi (n) yi,q (n)

Predictor

Side Info

Pk

xk (n)

xk,est (n)

xk,rec (n-1)

Qk

yk (n) yk,q (n)

Figure C.5 — Block diagram of prediction unit for one scalefactor band. The complete processing is
only shown for predictor Pi (Q - quantizer, REC - reconstruction of last quantized value). Note that the

predictor control operates on all predictors Pi ... Pj ... Pk of a scalefactor band and is followed by a
second control over all scalefactor bands.

C.5 Temporal Noise Shaping (TNS)

Temporal Noise Shaping is used to control the temporal shape of the quantization noise within each window
of the transform. This is done by applying a filtering process to parts of the spectral data of each channel.

Encoding is done on a window basis. The following steps are carried out to apply the Temporal Noise Shaping
tool to one window of spectral data:

• A target frequency range for the TNS tool is chosen. A suitable choice is to cover a frequency range from
1.5 kHz to the uppermost possible scalefactor band with one filter. Please note that this parameter
(TNS_MAX_BANDS) depends on profile and sampling rate as indicated in the normative part.

• Next, a linear predictive coding (LPC) calculation is carried out on the spectral MDCT coefficients
corresponding to the chosen target frequency range. For better stability, coefficients corresponding to
frequencies below 2.5 kHz may be excluded from this process. Standard LPC procedures as known from
speech processing can be used for the LPC calculation, e.g. the well-known Levinson-Durbin algorithm.
The calculation is carried out for the maximum permitted order of the noise shaping filter
(TNS_MAX_ORDER). Please note that this value depends on the profile as indicated in the normative
part.

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 175

• As a result of the LPC calculation, the expected prediction gain gp is known as well as the

TNS_MAX_ORDER reflection coefficients r[] (so-called PARCOR coefficients).

• If the prediction gain gp does not exceed a certain threshold t, no temporal noise shaping is used. In this

case, the tns_data_present bit is set to zero and TNS processing is finished. A suitable threshold value is
t = 1.4.

• If the prediction gain gp exceeds the threshold t, temporal noise shaping is used.

• In a next step the reflection coefficients are quantized using coef_res bits. An appropriate choice for
coef_res is 4 bits. The following pseudo code describes the conversion of the reflection coefficients r[] to
index values index[] and back to quantized reflection coefficients rq[].

 iqfac = ((1 << (coef_res-1)) - 0.5) / (π/2.0);
 iqfac_m = ((1 << (coef_res-1)) + 0.5) / (π/2.0);

 /* Reflection coefficient quantization */
 for (i = 0; i < TNS_MAX_ORDER; i++) {
 index[i] = NINT(arcsin(r[i]) * ((r[i] >= 0) ? iqfac : iqfac_m));
 }
 /* Inverse quantization */
 for (i = 0; i < TNS_MAX_ORDER; i++) {
 rq[i] = sin(index[i] / ((index[i] >= 0) ? iqfac : iqfac_m));
 }

where arcsin() denotes the inverse sin() function.

• The order of the used noise shaping filter is determined by subsequently removing all reflection
coefficients with an absolute value smaller than a threshold p from the "tail" of the reflection coefficient
array. The number of the remaining reflection coefficients is the order of the noise shaping filter. A
suitable threshold for truncation is p = 0.1.

• The remaining reflection coefficients rq[] are converted into order+1 linear prediction coefficients a[]
(known as "step-up procedure"). A description of this procedure is provided in the normative part as a part
of the tool description (see "/* Conversion to LPC coefficients */").

• The computed LPC coefficients a[] are used as the encoder noise shaping filter coefficients. This FIR filter
is slid across the specified target frequency range exactly the way it is described in the normative part for
the decoding process (tool description). The difference between the decoding and encoding filtering is that
the all-pole (auto-regressive) filter used for decoding is replaced by its inverse all-zero (moving-average)
filter, i.e. replacing the decoder filter equation

 y[n] = x[n] - a[1]*y[n-1] - ... - a[order]*y[n-order]

by the inverse (encoder) filter equation

 y[n] = x[n] + a[1]*x[n-1] + ... + a[order]*x[n-order]

By default, an upward direction of the filtering is appropriate.

• Finally, the side information for Temporal Noise Shaping is transmitted:

Table C.25 — TNS side information

Data Element Algorithmic Variable or Value

n_filt 1

coef_res coef_res-3

coef_compress 0

length Number of processed scalefactor bands

direction 0 (upwards)

order Order of noise shaping filter

coef[] index[]

ISO/IEC 13818-7:2006(E)

176 © ISO/IEC 2006 – All rights reserved

Optionally, the use of the coef_compress field allows saving 1 bit per transmitted reflection coefficient if none
of the reflection coefficients use more than half of their full range. Specifically, if the two most significant bits of
each quantized reflection coefficient are either ‘00’ or ‘11’, coeff_compress may be set to a value of one and
the size of the transmitted quantized reflection coefficients decreased by one.

C.6 Joint Coding

C.6.1 M/S Stereo

The decison to code left and right coefficients as either left + right (L/R) or mid/side (M/S) is made on a
noiseless coding band by noiseless coding band basis for all spectral coefficients in the current block. For
each noiseless coding band the following decison process is used:

1. For each noiseless coding band, not only L and R raw thresholds, but also M = (L+R)/2 and S = (L-R)/2
raw thresholds are calculated. For the raw M and S thresholds, rather than using the tonality for the M or
S threshold, one uses the more tonal value from the L or R calculation in each threshold calculation band,
and proceed with the psychoacoustic model for M and S from the M and S energies and the minimum of

the L or R values for C(ω) in each threshold calculation band. The values that are provided to the imaging
control process are identified in the psychoacoustic model information section as en(b) (the spread
normalized energy) and nb(b), the raw threshold.

2. The raw thresholds for M, S, L and R, and the spread energy for M, S, L and R, are all brought into an
“imaging control process”. The resulting adjusted thresholds are inserted as the values for cb(b) into step
11 of the psychoacoustic model for further processing.

3. The final, protected and adapted to coder-band thresholds for all of M,S,L and R are directly applied to the
appropriate spectrum by quantizing the actual L, R, M and S spectral values with the appropriate
calculated and quantized threshold.

4. The number of bits actually required to code M/S, and the number of bits required to code L/R are
calculated.

5. The method that uses the least bits is used in each given noiseless coding band, and the stereo mask is
set accordingly.

With these definitions

Mthr,Sthr,Rthr, Lthr raw thresholds. (the nb(b) from step 10 of the psychoacoustic model)

Mengy,Sengy,Rengy,Sengy spread energy.(en(b) from step 6 of the psychoacoustic model)

Mfthr, Sfthr, Rfthr, Lfthr final (output) thresholds. (returned as nb(b) in step 11 of the psychoacoustic
model)

bmax(b) BMLD protection ratio, as can be calculated from

min((), 15.5)
3 0.5 0.5 cos

15.5() 10
bval b

bmax b π
⎡ ⎤⎛ ⎞− ⋅ + ⋅ ⋅⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦=

the imaging control process for each noiseless coding band is as follows:

t = Mthr/Sthr

if (t > 1)

 t = 1/t

Rfthr = max(Rthr*t, min (Rthr, bmax*Rengy)

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 177

Lfthr = max(Lthr*t, min (Lthr, bmax) *Lengy)

t = min(Lthr, Rthr)

Mfthr = min(t, max(Mthr, min(Sengy*bmax,Sthr))

Sfthr = min(t, max(Sthr, min(Mengy*bmax,Mthr))

C.6.2 Intensity Stereo Coding

Intensity stereo coding is used to exploit irrelevance in the between both channels of a channel pair in the high
frequency region. The following procedure describes one possible implementation while several different
implementations are possible within the framework of the defined bitstream syntax.

Encoding is done on a window group basis. The following steps are carried out to apply the intensity stereo
coding tool to one window group of spectral data:

• A suitable approach is to code a consecutive region of scalefactor bands in intensity stereo technique
starting above a lower border frequency f0. An average value of f0 = 6 kHz is appropriate for most types of

signals.

• For each scalefactor band, the energy of the left, right and the sum channel is calculated by summing the
squared spectral coefficients, resulting in values El[sfb], Er[sfb], Es[sfb]. If the window group comprises

several windows, the energies of the included windows are added.

• For each scalefactor band, the corresponding intensity position value is computed as

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅=

][

][
log2][_ 2

sfbE

sfbE
NINTsfbpositionis

r

l

• Next, the intensity signal spectral coefficients speci[i] are calculated for each scalefactor bands by adding

spectral samples from the left and right channel (specl[i] and specr[i]) and rescaling the resulting values

like

][

][
])[][(][

sfbE

sfbE
ispecispecispec

s

l

rli ⋅+=

• The intensity signal spectral components are used to replace the corresponding left channel spectral
coefficients. The corresponding spectral coefficients of the right channel are set to zero.

Then, the standard process for quantization and encoding is performed on the spectral data of both channels.
However, the prediction status of the right channel predictors is forced to "off" for the scalefactor bands coded
in intensity stereo. These predictors are updated by using an intensity decoded version of the quantized
spectral coefficients. The procedure for this is described in the tool description for the intensity stereo
decoding process in the normative part.

Finally, before transmission the Huffman codebook INTENSITY_HCB (15) is set in the sectioning information
for all scalefactor bands that are coded in intensity stereo.

ISO/IEC 13818-7:2006(E)

178 © ISO/IEC 2006 – All rights reserved

C.7 Quantization

C.7.1 Introduction

The description of the AAC quantization module is subdivided into three levels. The top level is called "loops
frame program". The loops frame program calls a subroutine named "outer iteration loop" which calls the
subroutine "inner iteration loop". For each level a corresponding flow diagram is shown.

The loops module quantizes an input vector of spectral data in an iterative process according to several
demands. The inner loop quantizes the input vector and increases the quantizer step size until the output
vector can be coded with the available number of bits. After completion of the inner loop an outer loop checks
the distortion of each scalefactor band and, if the allowed distortion is exceeded, attenuates the scalefactor
band and calls the inner loop again.

AAC loops module input:

1. vector of the magnitudes of the spectral values mdct_line(0..1023).

2. xmin(sb) (see subclause C.1.4, step 0)

3. mean_bits (average number of bits available for encoding the bitstream).

4. more_bits, the number of bits in addition to the average number of bits, calculated by the psychoacoustic
module out of the perceptual entropy (PE).

5. the number and width of the scalefactor bands (see Table 45 to Table 57)

6. for short block grouping the spectral values have to be interleaved so that spectral lines that belong to the
same scalefactor band but to different block types which shall be quantized with the same scalefactors are
put together in one (bigger) scalefactor band (for a full description of grouping see subclause 8.3.4)

AAC loops module output:

1. vector of quantized values x_quant(0..1023).

2. a scalefactor for each scalefactor band (sb)

3. common_scalefac (quantizer step size information for all scalefactor bands)

4. number of unused bits available for later use.

C.7.2 Preparatory Steps

C.7.2.1 Reset of all Iteration Variables

1. The start value of common_scalefac for the quantizer is calculated so that all quantized MDCT values can
be encoded in the bitstream :

start_common_scalefac = ceiling(16/3*(log2((max_mdct_line ^ (3/4))/MAX_QUANT)))

max_mdct_line is the largest absolute MDCT coefficient and ceiling() is the function which rounds to the
nearest integer in the direction of positive infinity. MAX_QUANT is the maximum quantized value which can
be encoded in the bitstream, defined as 8191. During the iteration process, the common_scalefac must not
become less than start_common_scalefac.

2. Scalefactor[sb] is set to zero for all values of sb.

C.7.3 Bit Reservoir Control

Bits are saved to the reservoir when fewer than the mean_bits are used to code one frame.

mean_bits = bit_rate * 1024 / sampling_rate.

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 179

The number of bits which can be saved in the bit reservoir at maximum is called ‘max_bit_reservoir’ which is
calculated using the procedure outlined in subclause 8.2.3. If the reservoir is full, unused bits have to be
encoded in the bitstream as fillbits.

The maximum amount of bits available for a frame is the sum of mean_bits and bits saved in the bit reservoir.

The number of bits that should be used for encoding a frame depends on the more_bits value which is
calculated by the psychoacoustic model and the maximum available bits. The simplest way to control bit
reservoir is :

if more_bits > 0 :
 available_bits = mean_bits + min (more_bits, bit_reservoir_state[frame])
if more_bits < 0 :
 available_bits = mean_bits + max (more_bits, bit_reservoir_state[frame]
 - max_bit_reservoir)

C.7.4 Quantization of MDCT Coefficients

The formula for the quantization in the encoder is the inverse of the decoder dequantization formula (see also
the decoder description) :

x_quant = int ((abs(mdct_line) * (2^(- ¼ * (sf_decoder - SF_OFFSET))))^(3/4) + MAGIC_NUMBER)

MAGIC_NUMBER is defined to 0.4054, SF_OFFSET is defined as 100 and mdct_line is one of spectral
values, which is calculated from the MDCT. These values are also called ‘coefficients’. The scalefactor
'sf_decoder' is the same as 'sf[g][sfb]' defined in clause 11.

For use in the iteration loops, the scalefactor ‘sf_decoder’ is split in two variables:

sf_decoder = common_scalefac - scalefactor + SF_OFFSET

It follows from this, that the formula used in the distortion control loop is:

x_quant = int((abs(mdct_line) * (2^(-¼ * (scalefactor - common_scalefac))))^(3/4)
+ MAGIC_NUMBER)

The signs of scalefactor is such that a positive change increases the magnitude of x_quant, and so decreases
the distortion and increases the number of bits used.

The sign of the mdct_line is saved separately and added again only for counting the bits and encoding the
bitstream.

C.7.4.1 Outer Iteration Loop (Distortion Control Loop)

The outer iteration loop controls the quantization noise which is produced by the quantization of the frequency
domain lines within the inner iteration loop. The coloring of the noise is done by multiplication of the lines
within scalefactor bands with the actual scalefactors before doing the quantization. The following pseudo-code
illustrates the multiplication.

 do for each scalefactor band sb:

 do from lower index to upper index i of scalefactor band

 mdct_scaled(i) = abs(mdct_line(i))^(3/4) * 2^(3/16 * scalefactor(sb))

 end do

 end do

ISO/IEC 13818-7:2006(E)

180 © ISO/IEC 2006 – All rights reserved

C.7.4.2 Call of Inner Iteration Loop

For each outer iteration loop (distortion control loop) the inner iteration loop (rate control loop) is called. The
parameters are the frequency domain values with the scalefactors applied to the values within the scalefactor
bands (mdct_scaled(0..1023)), a start value for common_scalefac, and the number of bits which are available
to the rate control loop. The result is the number of bits actually used and the quantized frequency lines
x_quant(i), and a new common_scalefac.

The formula to calculate the quantized MDCT coefficients is:

x_quant(i) = int ((mdct_scaled (i) * 2^(-3/16 * common_scalefac)) + MAGIC_NUMBER)

The bits, that would be needed to encode the quantized values and the side information (scalefactors etc.) are
counted according to the bitstream syntax, described in clause 9.

C.7.4.3 Attenuation of Scalefactor Bands which Violate the Masking Threshold

The calculation of the distortion (error_energy(sb)) of the scalefactor band is done as follows:

 do for each scalefactor band sb:
 error_energy(sb)=0
 do from lower index to upper index i of scalefactor band
 error_energy(sb) = error_energy(sb) + (abs(mdct_line(i))
 - (x_quant(i) ^(4/3) * 2^(¼ * (scalefactor(sb) -common_scalefac
))))^2
 end do
 end do
All spectral values of the scalefactor bands which have a distortion that exceeds the allowed distortion
(xmin(sb)) are attenuated according to formula in subclause C.7.4.1, the new scalefactors can be calculated
according to this pseudocode:

 do for each scalefactor band sb
 if (error_energy(sb) > xmin(sb)) then
 scalefactor(sb) = scalefactor(sb) - 1
 end if
 end do

C.7.4.4 Conditions for the Termination of the Loops Processing

Normally the loops processing terminates, if there is no scalefactor band with more than the allowed distortion.
However this is not always possible to obtain. In this case there are other conditions to terminate the outer
loop. If

• All scalefactor bands with an energy exceeding xmin(sb) are already attenuated, or

• The difference between two consecutive scalefactors is greater than 60

The loop processing stops, and by restoring the saved scalefactors(sb) a useful output is available. For real-
time implementation, there might be a third condition added which terminates the loops in case of a lack of
computing time.

The procedure described above is only valid in the case the number of available bits is equal to the number of
required bits corresponding to the perceptual entropy. In the case the number of available bits is higher or
lower than the number of required bits, it is the objective of the loops module to create a constant ratio
between the quantisation noise and the masked threshold over all scale factor bands (constant Noise to Mask
Ratio (NMR)). This can be realised by applying an offset to the target allowed distortion xmin(sb), that is the
same for all scale factor bands, prior to starting the loops module.

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 181

C.7.4.5 Inner Iteration Loop (Rate Control Loop)

The inner iteration loop calculates the actual quantization of the frequency domain data (mdct_scaled) with the
following function, which uses the formula from subclause C.7.4.2:

quantize_spectrum(x_quant[] , mdct_scaled[] , common_scalefac):
 do for all MDCT coefficients i :
 x_quant(i) = int ((mdct_scaled (i) * 2^(-3/16 * common_scalefac))
 + MAGIC_NUMBER)
 end do
and then calls a function bit_count(). This function counts the number of bits that would be neccessary to
encode a bitstream frame according to clause 6.

The inner iteration loop can be implemented using successive approximation:

inner_loop():
 if (outer_loop_count == 0)
 common_scalefac = start_common_scalefac;
 quantizer_change = 32;
 else
 quantizer_change = 1;
 end if
 do
 quantize_spectrum();
 counted_bits = bit_count();
 if (counted_bits > available_bits) then
 common_scalefac = common_scalefac + quantizer_change;
 else
 common_scalefac = common_scalefac - quantizer_change;
 end if
 quantizer_change = int (quantizer_change / 2) ;
 if (quantizer_change == 0) && (counted_bits > available_bits)
 quantizer_change = 1;
 end if
 while (quantizer_change != 0)
Due to the choice of start_common_scalefac calculated from subclause C.7.2.1, after the first run through the
inner loop the number of needed bits is usually greater than the available bits , and therefore
common_scalefac will be increased by the quantizer_change.

ISO/IEC 13818-7:2006(E)

182 © ISO/IEC 2006 – All rights reserved

Calculation of available bits

Reset of iteration variables

Outer Iteration Loop

Calculate the number of unused bits

RETURN

All spectral values zero ?

n

y

BEGIN

Figure C.6 — AAC iteration loop

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 183

RETURN

n

y

Inner Iteration Loop

Calculate the distortion for each

scalefactor band

Save scaling factors of the scalefactor

bands

Amplify scalefactor bands with more than the

allowed distortion

At least one band with more than the allowed

distortion ?

Amplification of all bands below upper limit

?

All scalefactor bands amplified ?

Restore scaling factors

n
y

n

y

BEGIN

Figure C.7 — AAC outer iteration loop

ISO/IEC 13818-7:2006(E)

184 © ISO/IEC 2006 – All rights reserved

Quantization

change quantizer_change

count bits

quantizer_change = 0 ?

BEGIN

add quantizer_change

to common_scalefac

n

y

Figure C.8 — AAC inner iteration loop

C.8 Noiseless Coding

C.8.1 Introduction

In the AAC encoder the input to the noiseless coding module is the set of 1024 quantized spectral coefficients.
Since the noiseless coding is done inside the quantizer inner loop, it is part of an iterative process that
converges when the total bit count (of which the noiseless coding is the vast majority) is within some interval
surrounding the allocated bit count. This section will describe the encoding process for a single call to the
noiseless coding module.

Noiseless coding is done via the following steps:

• Spectrum clipping

• Preliminary Huffman coding using maximum number of sections

• Section merging to achieve lowest bit count

C.8.2 Spectrum Clipping

As a first step a method of noiseless dynamic range limiting may be applied to the spectrum. Up to four
coefficients can be coded separately as magnitudes in excess of one, with a value of +-1 left in the quantized
coefficient array to carry the sign. The index of the scalefactor band containing the lowest-frequency “clipped”

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 185

coefficients is sent in the bitstream. Each of the “clipped” coefficients is coded as a magnitude (in excess of 1)
and an offset from the base of the previously indicated scalefactor band. For this the long block scalefactor
bands and coefficient ordering within those bands are used regardless of the window sequence. One strategy
for applying spectrum clipping is to clip high-frequency coefficients whose absolute amplitudes are larger than
one. Since the side information for carrying the clipped coefficients costs some bits, this noiseless
compression is applied only if it results in a net savings of bits.

C.8.3 Sectioning

The noiseless coding segments the set of 1024 quantized spectral coefficients into sections, such that a single
Huffman codebook is used to code each section (the method of Huffman coding is explained in a later
section). For reasons of coding efficiency, section boundaries can only be at scalefactor band boundaries so
that for each section of the spectrum one must transmit the length of the section, in scalefactor bands, and the
Huffman codebook number used for the section.

Sectioning is dynamic and typically varies from block to block, such that the number of bits needed to
represent the full set of quantized spectral coefficients is minimized. This is done using a greedy merge
algorithm starting with the maximum possible number of sections each of which uses the Huffman codebook
with the smallest possible index. Sections are merged if the resulting merged section results in a lower total bit
count, with merges that yield the greatest bit count reduction done first. If the sections to be merged do not
use the same Huffman codebook then the codebook with the higher index must be used.

Sections often contain only coefficients whose value is zero. For example, if the audio input is band limited to
20 kHz or lower, then the highest coefficients are zero. Such sections are coded with Huffman codebook zero,
which is an escape mechanism that indicates that all coefficients are zero and it does not require that any
Huffman codewords be sent for that section.

C.8.4 Grouping and Interleaving

If the window sequence is eight short windows then the set of 1024 coefficients is actually a matrix of 8 by 128
frequency coefficients representing the time-frequency evolution of the signal over the duration of the eight
short windows. Although the sectioning mechanism is flexible enough to efficiently represent the 8 zero
sections, grouping and interleaving provide for greater coding efficiency. As explained earlier, the coefficients
associated with contiguous short windows can be grouped such that they share scalefactors amongst all
scalefactor bands within the group. In addition, the coefficients within a group are interleaved by interchanging
the order of scalefactor bands and windows. To be specific, assume that before interleaving the set of 1024
coefficients c are indexed as

 c[g][w][b][k]

where

g is the index on groups

w is the index on windows within a group

b is the index on scalefactor bands within a window

k is the index on coefficients within a scalefactor band

and the right-most index varies most rapidly.

After interleaving the coefficients are indexed as

 c[g][b][w][k]

This has the advantage of combining all zero sections due to band-limiting within each group.

ISO/IEC 13818-7:2006(E)

186 © ISO/IEC 2006 – All rights reserved

C.8.5 Scalefactors

The coded spectrum uses one quantizer per scalefactor band. The step sizes of each of these quantizers is
specified as a set of scalefactors and a global gain which normalizes these scalefactors. In order to increase
compression, scalefactors associated with scalefactor bands that have only zero-valued coefficients are
ignored in the coding process and therefore do not have to be transmitted. Both the global gain and
scalefactors are quantized in 1.5 dB steps. The global gain is coded as an 8-bit unsigned integer and the
scalefactors are differentially encoded relative to the previous scalefactor (or global gain for the first
scalefactor) and then Huffman coded. The dynamic range of the global gain is sufficient to represent full-scale
values from a 24-bit PCM audio source.

C.8.6 Huffman Coding

Huffman coding is used to represent n-tuples of quantized coefficients, with the Huffman code drawn from one
of 11 codebooks. The spectral coefficients within n-tuples are ordered (low to high) and the n-tuple size is two
or four coefficients. The maximum absolute value of the quantized coefficients that can be represented by
each Huffman codebook and the number of coefficients in each n-tuple for each codebook is shown in Table
C.26. There are two codebooks for each maximum absolute value, with each representing a distinct
probability distribution function. The best fit is always chosen. In order to save on codebook storage (an
important consideration in a mass-produced decoder), most codebooks represent unsigned values. For these
codebooks the magnitude of the coefficients is Huffman coded and the sign bit of each non-zero coefficient is
appended to the codeword.

Table C.26 — Huffman Codebooks

Codebook index n-Tuple size Maximum absolute value Signed values

0 0

1 4 1 yes

2 4 1 yes

3 4 2 no

4 4 2 no

5 2 4 yes

6 2 4 yes

7 2 7 no

8 2 7 no

9 2 12 no

10 2 12 no

11 2 16 (ESC) no

Two codebooks require special note: codebook 0 and codebook 11. As mentioned previously, codebook 0
indicates that all coefficients within a section are zero. Codebook 11 can represent quantized coefficients that
have an absolute value greater than or equal to 16. If the magnitude of one or both coefficients is greater than
or equal to 16, a special escape coding mechanism is used to represent those values. The magnitude of the
coefficients is limited to no greater than 16 and the corresponding 2-tuple is Huffman coded. The sign bits, as
needed, are appended to the codeword. For each coefficient magnitude greater or equal to 16, an escape
sequence is also appended, as follows:

escape sequence = <escape_prefix><escape_separator><escape_word>

where

<escape_prefix> is a sequence of N binary “1’s”

<escape_separator> is a binary “0”

<escape_word> is an N+4 bit unsigned integer, msb first

and N is a count that is just large enough so that the magnitude of the quantized coefficient is equal to

2^(N+4) + <escape_word>

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 187

C.9 Features of AAC dynamic range control

In order to handle source material with variable peak levels, mean levels and dynamic range in a manner that
minimizes the variability for the consumer, it is necessary to control the reproduced level such that, for
instance, dialogue level or mean music level is set to a consumer controlled level at reproduction, regardless
of how the programme was originated. Additionally, not all consumers will be able to audition the programmes
in a good (i.e. low noise) environment, with no constraint on how loud they make the sound. The car
environment, for instance, has a high ambient noise level and it can therefore be expected that the listener will
want to reduce the range of levels that would otherwise be reproduced.

For both of these reasons, dynamic range control has to be available within the specification of AAC. To
achieve this, it is necessary to accompany the bit-rate reduced audio with data used to set and control the
dynamic range of the programme items. This control has to be specified relative to a reference level and in
relationship to the important programme elements, e.g. the dialogue.

The features of the dynamic range control are as follows:

1. Dynamic Range Control is entirely optional. Therefore, with correct syntax, there is no change in
complexity for those not wishing to invoke DRC.

2. The bit-rate reduced audio data is transmitted with the full dynamic range of the source material, with
supporting data to assist in dynamic range control.

3. The dynamic range control data can be sent every frame to reduce to a minimum the latency in setting
replay gains.

4. The dynamic range control data is sent using the ‘fill_element’ feature of AAC.

5. The Reference Level is defined as Full-scale.

6. The Programme Reference Level is transmitted to permit level parity between the replay levels of different
sources and to provide a reference about which the dynamic range control may be applied. It is that
feature of the source signal that is most relevant to the subjective impression of the loudness of a
programme, such as the level of the dialogue content of a programme or the average level of a music
programme.

7. The Programme Reference Level represents that level of programme that may be reproduced at a set
level relative to the Reference Level in the consumer hardware to achieve replay level parity. Relative to
this, the quieter portions of the programme may be increased in level and the louder portions of the
programme may be reduced in level.

8. Programme Reference Level is specified within the range 0 to -31.75 dB relative to Reference Level.

9. Programme Reference Level uses a 7 bit field with 0.25 dB steps.

10. The dynamic range control is specified within the range ±31.75 dB.

11. The dynamic range control uses an 8 bit field (1 sign, 7 magnitude) with 0.25 dB steps.

12. The dynamic range control can be applied to all of an audio channel’s spectral coefficientsfrequency
bands as a single entity or the coefficients can be split intowith different scalefactor bands, each being
controlled separately by separate sets of dynamic range control data.

ISO/IEC 13818-7:2006(E)

188 © ISO/IEC 2006 – All rights reserved

13. The dynamic range control can be applied to all channels (of a stereo or multichannel bitstream) as a
single entity or can be split, with sets of channelsChannels being controlled separately by separate sets of
dynamic range control data.

14. If an expected set of dynamic range control data is missing, the last received valid values should be used.

15. Not all elements of the dynamic range control data are sent every time. For instance, Programme
Reference Level may only be sent on average once every 200 ms.

16. Where necessary, error detection/protection is provided by the Transport Layer.

17. The user shall be given the means to alter the amount of dynamic range control, present in the bitstream,
that is applied to the level of the signal.

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 189

Annex D
(informative)

Patent Holders

D.1 List of Patent Holders

The International Organization for Standardization and the International Electrotechnical Commission (IEC)
draw attention to the fact that it is claimed that compliance with this part of ISO/IEC 13818 may involve the
use of patents.

ISO and IEC take no position concerning the evidence, validity and scope of these patent rights.

The holders of these patent rights have assured the ISO and IEC that they are willing to negotiate licences
under reasonable and non-discriminatory terms and conditions with applicants throughout the world. In this
respect, the statements of the holders of these patents right are registered with ISO and IEC. Information may
be obtained from the companies listed in Table D.1.

Attention is drawn to the possibility that some of the elements of this part of ISO/IEC 13818 may be the
subject of patent rights other than those identified in this annex. ISO and IEC shall not be held responsible for
identifying any or all such patent rights.

Table D.1 — Companies who supplied patent statements

AT&T

BOSCH

Dolby Laboratories, Inc.

Fraunhofer Gesellschaft

GCL

Lucent Technologies

NEC Corporation

Philips Electronics N.V.

Sony Corporation

Thomson Multimedia

ISO/IEC 13818-7:2006(E)

190 © ISO/IEC 2006 – All rights reserved

Annex E
(informative)

Registration Procedure

E.1 Procedure for the Request of a Registered Identifier (RID)

Requesters of a RID shall apply to the Registration Authority. Registration forms shall be available from the
Registration Authority. Information which the requester shall provide is given in subclause E.3. Companies
and organizations are eligible to apply.

E.2 Responsibilities of the Registration Authority

The primary responsibilities of the Registration Authority administrating the registration of copyright_identifiers
is outlined in this clause ; certain other responsibilities may be found in the JTC 1 Directives. The Registration
Authority shall :

a) implement a registration procedure for application for a unique RID in accordance with Annex H of the
JTC 1 Directives ;

b) receive and process the applications for allocation of the work type code identifier from Copyright
Registration Authority ;

c) ascertain which applications received are in accordance with this registration procedure, and to inform
the requester within 30 days of receipt of the application of their assigned RID ;

d) inform application providers whose request is denied in writing within 30 days of receipt of the
application, and also inform the requesting party of the appeals process ;

e) maintain an accurate register of the allocated RID. Revisions to the contact information and technical
specifications shall be accepted and maintained by the Registration Authority ;

f) make the contents of this register available upon request to any interested party ;

g) maintain a data base of RID request forms, granted and denied. Parties seeking technical information
on the format of private data which has a copyright_identifier shall have access to such information
which is part of the data base maintained by the Registration Authority ;

h) report its activities to JTC 1, the ITTF, and the JTC 1/SC 29 Secretariat, or their respective assignees,
annually on a schedule mutually agreed upon.

E.3 Contact Information of the Registration Authority

Organization Name:

Address:

Telephone:

Fax:

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 191

E.4 Responsibilities of Parties Requesting a RID

The party requesting a RID for the purpose of copyright identification shall :

a) apply using the Form and procedures supplied by the Registration Authority ;

b) provide contact information describing how a complete description of the copyright organization can be
obtained on a non-discriminatory basis;

c) include technical details of the syntax and semantics of the data format used to describe the audio-
visual works or other copyrighted works within the additional_copyright_info field. Once registered, the
syntax used for the additional copyright information shall not change;

d) agree to institute the intended use of the granted copyright_identifier within a reasonable time frame;

e) to maintain a permanent record of the application form and the notification received from the
Registration Authority of each granted copyright_identifier.

E.5 Appeal procedure for Denied Applications

The Registration Management Group is formed to have jurisdiction over appeals relating to a denied request
for a RID. The RMG shall have a membership who are nominated by P and L members of the ISO technical
body responsible for this part of ISO/IEC 13818. It shall have a convenor and secretariat nominated from its
members. The Registration Authority is entitled to nominate one non-voting observing member.

The responsibilities of the RMG shall be :

a) To review and act on all appeals within a reasonable time frame ;

b) to inform, in writing, organisations which make an appeal for reconsideration of its petition of the RMGs
disposition of the matter;

c) to review the annual report of the Registration Authority summary of activities;

d) to supply ISO member bodies with information concerning the scope of operation of the Registration
Authority.

ISO/IEC 13818-7:2006(E)

192 © ISO/IEC 2006 – All rights reserved

Annex F
(informative)

Registration Application Form

Contact information of organization requesting a Registered Identifier (RID)

Organization Name :

Address :

Telephone :

Fax :

E-mail :

Statement of an intention to apply the assigned RID

RID application domain : using guidelines to be provided by the Registration Authority

Date of intended implementation of the RID

Authorized representative

Name :

Title :

Address :

Signature __________________________________

For official use only of the Registration Authority

 Registration Rejected _____

 Registration Granted ______ Registration Value _______

Attachment 1: Attachment of technical details of the registered data format

Attachment 2: Attachment of notification of appeal procedure for rejected applications

ISO/IEC 13818-7:2006(E)

© ISO/IEC 2006 – All rights reserved 193

Annex G
(informative)

Registration Authority

Registration Authority

Diagramm of administration structure

Video

Systems

Audio

Copyright_identifier

Registration
Authority

Responsible for

the identifier
references
allocation

Correspondence table

ISSN
ISBN
ISMN
ISAN
.
.
.

XXI
XYI
XXI
YIX
.
.
.

The Registration Authority
indicates the meaning
of the code which follows
and also identifies the
work type code.

copyright_identifier copyright_number

copyright_identifier copyright_number

copyright_identifier copyright_number

All the copyright_identifiers are registered by the Registration Authority,
uniquely for copyright_numbers standardized by ISO.
Each organization which allocates copyright_numbers requests a specific
copyright_identifier from the Registration Authority. e.g. Staatsbibliothek
Preussischer Kulturbesitz, designated by ISO to manage I.S.B.N., asks for a
specific copyright_identifier from the R.A. for book numbering.

Examples

copyright_identifier copyright_number

2-11- 0725 575 (ISBN Number)

1234567890123456 (ISAN Number)

I.S.B.N.
(for books)

I.S.A.N. (for
audiovisual works)

ISO/IEC 13818-7:2006(E)

194 © ISO/IEC 2006 – All rights reserved

Bibliography

[1] M. Bosi, K. Brandenburg, S. Quackenbush, L. Fielder, K. Akagiri, H. Fuchs, M. Dietz, J. Herre, G.
Davidson, Y. Oikawa, "ISO/IEC MPEG-2 Advanced Audio Coding", Journal of the Audio Engineering
Society, Vol. 45, no. 10, pp. 789-814, October 1997.

[2] ITU-R Document TG10-2/3- E only, Basic Audio Quality Requirements for Digital Audio Bit-Rate
Reduction Systems for Broadcast Emission and Primary Distribution, 28 October 1991.

[3] F. J. Harris, On the Use of Windows For Harmonic Analysis of the Discrete Fourier Transform, Proc. of
the IEEE, Vol. 66, pp. 51- 83, January 1975.

ISO/IEC 13818-7:2006(E)

ICS 35.040

Price based on 194 pages

© ISO/IEC 2006 – All rights reserved

Reference number
ISO/IEC 13818-7:2006/Amd.1:2007(E)

© ISO/IEC 2007

INTERNATIONAL
STANDARD

ISO/IEC
13818-7

First edition
2006-01-15

AMENDMENT 1
2007-11-15

Information technology — Generic coding
of moving pictures and associated audio
information —

Part 7:
Advanced Audio Coding (AAC)

AMENDMENT 1: Transport of MPEG
Surround in AAC

Technologies de l'information — Codage générique des images
animées et du son associé —

Partie 7: Codage du son avancé (AAC)

AMENDEMENT 1: Transport de périphérique MPEG dans AAC

ISO/IEC 13818-7:2006/Amd.1:2007(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but

shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In

downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat

accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation

parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

 COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2007

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,

electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or

ISO's member body in the country of the requester.

ISO copyright office

Case postale 56 • CH-1211 Geneva 20

Tel. + 41 22 749 01 11

Fax + 41 22 749 09 47

E-mail copyright@iso.org

Web www.iso.org

Published in Switzerland

ii © ISO/IEC 2007 – All rights reserved

ISO/IEC 13818-7:2006/Amd.1:2007(E)

© ISO/IEC 2007 – All rights reserved iii

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees
established by the respective organization to deal with particular fields of technical activity. ISO and IEC
technical committees collaborate in fields of mutual interest. Other international organizations, governmental
and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information
technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International
Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as
an International Standard requires approval by at least 75 % of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

Amendment 1 to ISO/IEC 13818-7:2006 was prepared by Joint Technical Committee ISO/IEC JTC 1,
Information technology, Subcommittee SC 29, Coding of audio, picture, multimedia and hypermedia
information.

ISO/IEC 13818-7:2006/Amd.1:2007(E)

© ISO/IEC 2007 – All rights reserved 1

Information technology — Generic coding of moving pictures
and associated audio information —

Part 7:
Advanced Audio Coding (AAC)

AMENDMENT 1: Transport of MPEG Surround in AAC

In the following, changes in existing text and tables are highlighted by grey background.

In subclause 6.3 extend Table 28 “Syntax of extension_payload()” as follows:

Table 28 – Syntax of extension_payload()

Syntax No. of bits Mnemonic

extension_payload(cnt)
{
 extension_type; 4 uimsbf
 switch(extension_type) {
 case EXT_DYNAMIC_RANGE:
 n = dynamic_range_info();
 return n;
 case EXT_SAC_DATA:
 return sac_extension_data(cnt);
 case EXT_SBR_DATA:
 return sbr_extension_data(id_aac, 0); Note 1
 case EXT_SBR_DATA_CRC:
 return sbr_extension_data(id_aac, 1); Note 1
 …
}

In subclause 8.8.1.2 extend Table 40 “Values of the extension_type data element” as follows:

Table 40 – Values of the extension_type data element

Symbol Value of extension_type Purpose

EXT_FILL ‘0000’ bitstream payload filler

EXT_FILL_DATA ‘0001’ bitstream payload data as filler

EXT_DYNAMIC_RANGE ‘1011’ dynamic range control

EXT_SAC_DATA ‘1100’ MPEG Surround

EXT_SBR_DATA ‘1101’ SBR enhancement

EXT_SBR_DATA_CRC ‘1110’ SBR enhancement with CRC

- all other values reserved

ISO/IEC 13818-7:2006/Amd.1:2007(E)

2 © ISO/IEC 2007 – All rights reserved

In subclause 6.3 after Table 30 add a new Table “Syntax of sac_extension_data()” as given below:

Table 30A – Syntax of sac_extension_data()

Syntax No. of bits Mnemonic

sac_extension_data(cnt)
{

 ancType; 2 uimsbf

 ancStart; 1 uimsbf

 ancStop; 1 uimsbf
 for (i=0; i<cnt-1; i++) {
 ancDataSegmentByte[i]; 8 bslbf
 }
 return (cnt);
}

After subclause 8.8.4 add a new subclause 8.8.5 as given below:

8.8.5 MPEG Surround (Spatial Audio Coding)

The syntax element sac_extension_data() is used to embed spatial audio coding side information for MPEG
Surround decoding as defined in ISO/IEC 23003-1. The semantics of the syntax elements ancType, ancStart,
ancStop, and ancDataSegmentByte is defined in ISO/IEC 23003-1:2007, 7.2.4.

In subclause 9.3 (Decoding process), replace:

“…from the previously decoded coefficients…”

In the first paragraph on p. 75

with:

“…from the previously determined coefficients…”

Add the following reference to the bibliography:

[4] ISO/IEC 23003-1, Information technology — MPEG audio technologies — Part 1: MEPG Surround

ISO/IEC 13818-7:2006/Amd.1:2007(E)

ICS 35.040

Price based on 2 pages

© ISO/IEC 2007 – All rights reserved

© STANDARDS MALAYSIA 2009 - All rights reserved

Acknowledgements

Members of Technical Committee on Computer Graphics and Multimedia

Name Organisation

Assoc Prof Muhammad Mun'im Ahmad Zabidi
(Chairman)

Universiti Teknologi Malaysia

Mr Muhaimin Mat Salleh (Secretary) SIRIM Berhad

Mr Karan Henrik Ponnudurai Celcom Berhad

Mr Hasnul Nadzrin Shah Multimedia Development Corporation Sdn Bhd

Mr C S Chin Persatuan Industri Komputer dan Multimedia
Malaysia

Dr Rohmad Fakeh Radio Televisyen Malaysia

Dr Rahmita Wirza O.K. Rahmat Universiti Putra Malaysia

Mr Nur Azman Abu Universiti Teknikal Malaysia

Dr Noor Azman Ismail Universiti Teknologi Malaysia

Dr Mazani Manaf Universiti Teknologi MARA

© Copyright 2009
All rights reserved. No part of this publication may be reproduced or utilised in any
form or by any means, electronic or mechanical, including photocopying and
microfilm, without permission in writing from the Department of Standards Malaysia.

